Abstract
Silane modified magnetic nanoparticles were prepared after capped with silica generated from the hydrolyzation of tetraethyl orthosilicate (TEOS). Amino silane (SG-Si900) was added to this solution for surface modification of silica coated magnetic particles. Finally, D-penicillamine (D-PA)-antimetaderhin (anti-MTDH) was covalently linked to the amine group using glutaraldehyde as cross-linker. Magnetic nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and atomic force microscopy (AFM). AFM results showed that particles are nearly monodisperse, and the average size of particles was 40 to 50 nm. An amino acid derivative D-PA was conjugated anti-MTDH, which results the increase of uptaking potential of a conjugated agent, labelled fluorescein isothiocyanate (FITC) and then conjugated to the magnetic nanoparticles. In vitro evaluation of the conjugated D-PA-anti-MTDH-FITC to magnetic nanoparticle was studied on MCF-7 breast cancer cell lines. Fluorescence microscopy images of cells after incubation of the sample were obtained to monitor the interaction of the sample with the cancerous cells. Incorporation on cells of FITC labeled and magnetic nanoparticles conjugated D-PA-anti-MTDH was found higher than FITC labeled D-PA-anti-MTDH. The results show that magnetic properties and application of magnetic field increased incorporation rates. The obtained D-PA-anti-MTDH-magnetic nanoparticles-FITC complex has been used for in vitro imaging of breast cancer cells. FITC labeled and magnetic nanoparticles conjugated D-PA-anti-MTDH may be useful as a new class of scintigraphic agents. Results of this study are sufficiently encouraging to bring about further evaluation of this and related compounds for ultraviolet magnetic resonance (UV-MR) dual imaging.

Keywords: Fe3O4 magnetic nanoparticles, D-penicillamine, Anti-Metaderhin, fluorescein isothiocyanate (FITC), MCF-7.

Resumo
Nanopartículas magnéticas modificadas de silano foram preparadas após serem tampadas com sílica gerada da hidrólise do ortosilicato de tetraetilo (TEOS). Aminossilano (SG-Si900) foi adicionado à solução para modificação da superfície da sílica revestida por partículas magnéticas. Por fim, a D-penicilamina (D-PA)-antimetaderhin (anti-MTDH) foi covalentemente ligada ao Grupo da Amina, utilizando glutaraldeído como ligante cruzado. As nanopartículas magnéticas foram caracterizadas pela microscopia eletrônica de varredura (MEV), difração de raios X (DRX), magnetômetro de amostra vibrante (MVA) e microscopia de força atômica (MFA). Os resultados da MFA mostraram que as partículas estão quase monodispersas e o tamanho médio das partículas era de 40 a 50 nm. Um derivado aminoácido da D-PA foi conjugado como anti-MTDH, que resulta no aumento do potencial de absorção de um agente conjugado, isolocianato de fluoresceína marcado (FITC) e depois conjugado às nanopartículas magnéticas. A avaliação in vitro da D-PA-anti-MTDH-FITC conjugada à nanopartícula magnética foi estudada em linhagens das células do câncer de mama MCF-7. As imagens da microscopia de fluorescência das células após a incubação da amostra foram obtidas para monitorar a interação da amostra com as células cancerígenas. A incorporação nas células do FITC marcado e das nanopartículas magnéticas conjugadas de D-PA-anti-MTDH foi encontrada superior ao FITC marcado D-PA-anti-MTDH. Os resultados mostram que as propriedades magnéticas e a aplicação do campo magnético aumentaram as taxas de incorporação. O complexo D-PA-anti-MTDH das nanopartículas magnéticas do FITC foi utilizado para a visualização in vitro das células de câncer de mama. O FITC marcado e as nanopartículas magnéticas conjugadas em D-PA-anti-MTDH podem ser úteis como uma nova classe de agentes cintilográficos. Os resultados deste estudo favorecem a realização de futuras avaliações para este e outros compostos relacionados para a visualização com técnicas de duplica imagem da ressonância magnética ultravioleta.

Palavras-chave: nanopartículas magnéticas Fe3O4, D-penicilamina, antimetaderhin, isolocianato de fluoresceína, MCF-7.

Corresponding author: Unak Perihan – Institute of Nuclear Sciences, Department of Nuclear Applications, Ege University – 35100 Bornova Izmir Turkey – E-mail: unakpl@hotmail.com
Introduction

In recent years, magnetic nanoparticles have attracted much attention due to their unique magnetic properties and widespread application in cell separation\(^1\), drug delivery\(^4\), magnetic resonance imaging (MRI) techniques\(^5\), cancer diagnosis and treatment\(^6\). These ferrofluids can be directed to magnetic area due to their magnetic properties\(^10\). Biomedical applications have increased the interest of magnetic nanoparticles into silica. The nontoxic silica is an ideal coating material because of its capability form extensive cross-linking, which leads to an inert outer shield. Silanized nanocomposites are stable in a wide range of biological environments. They are biocompatible and can also be easily activated to provide new functional group.

D-Penicillamine (D-PA) is an aminothiol and a powerful chelating agent\(^13\). Penicillamine is largely used in medicine in rheumatoid arthritis, Wilson’s disease for the removal of copper, and in heavy metal poisoning\(^16,17\). Penicillamine is a pharmaceutical of chelator class. The pharmaceutical form is D-penicillamine. Like L-penicillamine, it is highly toxic\(^18\).

Metadherin is a type 2 transmembrane protein, in which its overexpression was first described in breast cancers. It plays an important role in the metastasis of breast cancers into the lungs as a secondary site of development. Metadherin is located in a small region of human chromosome 8, and it seems to be crucial to cancer’s spread or metastasis since it helps tumor cells to tightly stick to blood vessels in distant organs. The gene also makes tumors more resistant to the powerful chemotherapeutic agents normally used to wipe out the deadly cells.

Antibodies reactive to the lung-homing domain of metadherin and siRNA-mediated knockdown of metadherin expression in breast cancer cells inhibited experimental lung metastasis, indicating that tumor cell metadherin mediates localization at the metastatic site\(^19\).

Fluorescein isothiocyanate (FITC) is the original fluorescein molecule functionalized with an isothiocyanate reactive group (\(-N=C=S\)). The isothiocyanate group reacts with amino terminal and primary amines in proteins. It has been used for labeling proteins including antibodies and lectins\(^21,22\). Anti-MTDH conjugated D-penicillamine was labeled with FITC using the amine group.

A based-novel antibody and D-penicillamine, magnetic nanoparticle conjugated fluorescent complex for in vitro imaging of breast cancer cells was reported here.

Material and Methods

Materials

All reagents were commercially available and analytical grade. Anti-metadherin (100 mg/400mL) was purchased from Zymed. D-PA and FITC were purchased from Aldrich Chemical Co., and other chemicals were supplied from Merck Chemical Co. The MCF-7 human breast cancer cell line was obtained from the American Type Culture Collection.

Formation and Surface modification of Magnetic Nanoparticles

Synthesis of core-shell (Fe\(_3\)O\(_4\)–SiO\(_2\)) magnetic nanoparticles

Silica coated magnetic nanoparticles have been prepared by partial reduction of Fe\(^{3+}\) ion with sodium sulfide under nitrogen atmosphere. While Fe\(_3\)O\(_4\) magnetite nanoparticles have been formed at the first step of the reaction, they were coated with silica at the second one.

\[
6\text{Fe}^{3+} + \text{SO}_3^{2-} + 18\text{NH}_3\cdot\text{H}_2\text{O} \rightarrow 2\text{Fe}_2\text{O}_4 + \text{SO}_4^{2-} + 18\text{NH}_4^+ + 9\text{H}_2\text{O}
\]

Surface modification of silica coated magnetic particles with amino silane

Trialkoxysilyllalkil substitute polymethylene diamine compounds, like SG-Si900 (N-[3-(trimethoxyxysilyl)propyl]ethylenediamine), are used for surface coating of inorganic materials.

Glutaraldehyde Conjugation of Magnetic Nanoparticles

Determination of magnetic particles properties

The Scanning Electron Microscope (SEM) (Philips XL-30 S FEG) was taken to determine surface morphology and size of magnetic particles. Since the samples should be dry for imaging, sample was dispersed in an evaporating solvent (methanol) after being washed with ethanol-water mixture for three times in this study. Samples were taken with micropipette and put on the steel plates for SEM measurements. They were followed five minutes after methanol treated samples on steel plates were dried and images were taken.

X-Ray diffractometer (XRD) (Phillips X’Pert Pro) analyses of magnetic particles were studied. Elemental analyses of particles were made by X-ray diffraction. They were irradiated with collimated monochromatic X-rays. The diffraction angle and intensity of diffracted X-rays gave the known several comparable pattern of samples.

Magnetic properties of magnetic particles were examined with the Vibrating Sample Magnetometer (VSM) (LakeShore 7407) at Izmir Institute of Technology.

Atomic Force Microscope (AFM) (Q-Scope 250 Scanning Probe Microscope Ambios, Tech.) analyses of magnetic particles were carried out at the Institute of Solar Energy, Ege University.

Anti-Metadherin (Anti-MTDH) conjugation of D-Penicillamine

Five mg of D-penicillamine was dispersed in 1470 µL of 0.1 M sodium carbonate buffer (pH 9.0). Then, 30 µL of glutaraldehyde was added and mixture was stirred at 4° C for 24 hours. After that, 4 µL of anti-MTDH was added to the mixture, and it allowed to stand overnight at 4 °C.
The solution was centrifugated for five minutes at 10,000 X g by using centrifugal filter units (50,000 NMWL) to remove unbound anti-MTDH.

Labeling of anti-MTDH conjugated D-penicillamine

D-PA-anti-MTDH solution: The D-PA-anti-MTDH solution was prepared by dissolving 5 mg of D-penicillamine in freshly prepared 1 mL of 0.1 M sodium carbonate buffer (pH=9.0).

FITC solution: 1 mg FITC was used as labeling agent, and it was dissolved in 1 mL of dimethyl sulfoxide (DMSO).

FITC-D-PA-anti-MTDH: 100 μL of FITC solution was added into D-PA-anti-MTDH solution at dark condition.

The mixture stayed at 4 °C during eight hours in order to label D-PA-anti-MTDH with FITC.

500 μL of NH₄Cl buffer (50 mM) and FITC-D-PA-anti-MTDH were mixed and stayed at 4 °C, during two hours. Then, 100 μL of glycerine was added. The mixture passed through the column to leave unbound FITC.

Magnetic Nanoparticles Conjugation of FITC Labelled D-Penicillamine-Anti-MTDH

Approximately 1.5 mL of FITC-D-PA-anti-MTDH solution was obtained. 250 μL of 0.1 M PBS, containing 0.15 M NaCl, 0.005 M EDTA, was added to 1 mL of FITC-D-PA-anti-MTDH solution. After the addition of 2 μl (150 mg/mL) of magnetic nanoparticles, the mixture was kept at room temperature during 12 hours.

Incorporation Rates of FITC-D-PA-antibody Conjugated Magnetic Nanoparticles with MCF-7 Cells

MCF-7 breast cancer cell lines were used for this study. The cells were cultured and seeded into the wells of a 24 well culture plate and 9 cm² tissue culture petri dishes for fluorescence microscopy, after enough had been produced. In the study of biological activity detection of FITC labelled, magnetic nanoparticles conjugated D-PA-anti-MTDH in vitro, exactly 10⁶ MCF-7 cells were implanted on petri dishes. Cells were cultured to confluence at 37 °C and 5.0% CO₂. D-PA-anti-MTDH-FITC, D-PA-anti-MTDH-magnetic nanoparticles-FITC, control solution and magnetic field applying D-PA-anti-MTDH-magnetic nanoparticles-FITC were used in the study.

Medium over the cells was removed and the cells were washed with PBS for three times. 250 μL of these samples were put into the wells of a 24 well culture plate and 500 μL of these samples were put into 9 cm² tissue culture petri dishes after washing. NdFeB magnets were placed each well of the plate and magnetic field was applied to each well of these plates, while other well was not under magnetic field. Optimum incubation time was defined for two hours in the study. Culture medium was discarded from the wells at the optimum time (two hours) and washed with PBS for three times. After incubation time, 24 well culture plates were fluorometrically assayed in a multiwell fluorescence plate reader (Thermo, Milford, MA) to determine the %D-PA-anti-MTDH-FITC, D-PA-anti-MTDH-magnetic nanoparticles-FITC, and magnetic field applying D-PA-anti-MTDH-magnetic nanoparticles-FITC incorporation to cells. 9 cm² tissue culture Petri dishes were visualized with 100 X magnification and photographed through epi-fluorescence microscopy (Olympus, Tokyo, Japan). Besides, the magnetic field effect was determined for the several cellular incorporations of the ligands conjugated magnetic particles.

Results and discussion

Structural Properties of Magnetic Particles

SEM Analyses Results

The SEM imaging of magnetic particles is as depicted in Figures 1 to 3. SEM results showed that particles are nearly monodisperse. The average particle size is found to be from 40 to 50 nm. Sizes of the silica coated particles did not change after surface modification with silane.
XRD Analyses Results

XRD analyses of magnetic particles, after surface modification, show the X-ray diffraction pattern of the samples paired with Fe$_3$O$_4$ diffraction pattern (Figure 4).

VSM Analyses Results

Magnetic properties of magnetic particles were determined with VSM (LakeShore 7407). Magnetization value versus applied magnetic field for Fe$_3$O$_4$ magnetic particles was 16.28 emu/g.

AFM Analyses Results

Incorporation Rates of FITC-D-PA-anti-MTDH Conjugated Magnetic Nanoparticles with MCF-7

The obtained D-PA-anti-MTDH-magnetic nanoparticles-FITC complex have been used for *in vitro* imaging of breast cancer cells. The cellular binding efficiency of D-PA-anti-MTDH-FITC and D-PA-anti-MTDH-magnetic nanoparticles-FITC was calculated using the fluorescence signals as a result of the targeted-cell interaction.

Incorporation on cells of FITC labeled and magnetic nanoparticles conjugated D-PA-anti-MTDH was found higher than FITC labeled D-penicillamine. The results show that magnetic properties and applying magnetic field increased incorporation rates. On the other hand, D-penicillamine throat cancer cells (Detroit) using the same method on cytotoxic effects were shown in another study23. D-penicillamine is a good chelating agent for antibody conjugating to nanoparticles. These nanoparticles may be useful as a new class of agents to target antibody or biomolecules for imaging and targeted therapy of cancer. Results of this study are sufficiently encouraging to bring about further evaluation of this and related compounds.
References
