Novos Materiais Dosimétricos para Aplicações em Física Médica

Autores

DOI:

https://doi.org/10.29384/rbfm.2019.v13.n1.p24-33

Palavras-chave:

materiais dosimétricos, dosímetros, dosimetria pessoal, dosimetria clínica

Resumo

Este artigo apresenta o estado da arte dos materiais dosimétricos para aplicações em dosimetria pessoal e clínica. O objetivo é fornecer uma visão geral das vantagens e limitações dos dosímetros comerciais disponíveis mais usados, bem como novos materiais estudados na atualidade. Resumimos trabalhos recentes publicados sobre materiais cristalinos e vítreos mais discutidos e com melhores perspectivas para uso prático em dosimetria por Termoluminescência (TL), Luminescência Opticamente Estimulada (OSL), Radiofotoluminescência (RPL) e Ressonância de Spin Eletrônico (ESR), e ainda géis, dosímetros plásticos e emulsões superaquecidas. São tratadas novas formas de uso desses materiais, como fibras para dosimetria ativa, filmes dosimétricos para dosimetria 2D, e materiais que possam ser usados em dosimetria tridimensional. Os trabalhos atuais demonstram uma clara tendência da opção do uso cada vez maior de optoeletrônica para obtenção dos sinais e sua leitura.

Downloads

Não há dados estatísticos.

Biografia do Autor

Susana de Souza Lalic, Departamento de Física - Universidade Federal de Sergipe

Professor Associado - Departamento de Física - Universidade Federal de Sergipe

Divanizia do Nascimento Souza, Departamento de Física - Universidade Federal de Sergipe

Professor Titular - Departamento de Física - Universidade Federal de Sergipe

Oswaldo Baffa, Universidade de São Paulo - Faculdade de Filosofia Ciências e Letras de Ribeirão Preto

Professor Titular - Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Física e Matemática

Francesco d'Errico, Università di Pisa, Scuola di Ingegneria, Pisa, Italy Yale University, School of Medicine, New Haven CT, USA

Full Professor - Università di Pisa, Scuola di Ingegneria, Pisa, Italy
Researcher - Yale University, School of Medicine, New Haven CT, USA

Referências

Horowitz YS. Thermoluminescence dosimetry: State-of-the-art and frontiers of future research. Radiation Meas. 2017; 106:196-9.

McKeever SWS. Thermoluminescence of Solids. Cambridge: Cambridge University Press; 1988.

Antunes J, Machado J, Peralta L, Matela N. Plastic scintillation detectors for dose monitoring in digital breast tomosynthesis. Nuc Inst Meth Phys Res A. 2018; 877:346-8.

Ainsbury E et al. Integration of New Biological and Physical Retrospective Dosimetry Methods Into EU Emergency Response Plans – Joint RENEB and EURADOS Inter-Laboratory Comparisons. Int J Rad Biol. 2016; 93(1):99-109.

Trompier F, Bassinet C, Monaca SD, Romanyukha A, Reyes R, Clairand I. Overview of physical and biophysical techniques for accident dosimetry. Rad. Prot. Dosim. 2011; 144:571-574.

McKeever SWS, Moscovitch M, Townsend PD. Thermoluminescence Dosimetry Materials: Properties and Uses. Nuclear Technology Publishing, Ashford (1995).

Bøtter-Jensen L. Luminescence techniques: Instrumentation and methods. Radiat Meas, 1997; 27:749-68.

Yukihara EG, McKeever SWS. Optically Stimulated Luminescence: Fundamentals and Applications, Sussex: John Wiley & Sons; 2011.

Yamamoto T, Maki D, Sato F, Miyamoto Y, Nanto H, Iida T. The recent investigations of radiophotoluminescence and its application. Rad Meas. 2011; 46:1554-9.

Souza SO, d’Errico F, Takayoshi Y. State of the Art of Solid State Dosimetry. Proceedings of the International Joint Conference RADIO; 2014; Gramado; Brasil. 1-9.

Doull BA, Oliveira LC, Wang DY, Milliken ED, Yukihara EG Thermoluminescent properties of lithium borate, magnesium borate and calcium sulfate developed for temperature sensing. J Lumin. 2014; 146:408-17.

Akselrod MS, Agersnap Larsen N, Whitley VH, McKeever SWS. Thermal quenching of F-center luminescence in Al2O3:C. J Appl Phys. 1998; 84:3364–73.

Oliveira LC, Yukihara EG, Baffa O. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry. Scient Rep. 2016; 6:24348.

Sommer M, Jahn A, Henniger J. Beryllium oxide as optically stimulated luminescence dosimeter. Rad Meas. 2008; 43:353-6.

Yukihara EG, McKeever SWS, Akselrod MS. State of art: Optically stimulated luminescence dosimetry – Frontiers of future research. Rad Meas. 2014; 71:15-24.

Andersen CE, Edmund JM, Damkjær SMS. Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence. Radiat. Meas. 2010; 45:653-7.

Nascimento LF, Vanhavere F, Kodaira S et al. Application of Al2O3:C+ fibre dosimeters for 290 MeV/n carbon therapeutic beam dosimetry. Rad Phys Chem. 2015; 115:75-80.

Dipasquale G, Nouet P, Rouzaud M, et al. In vivo quality assurance of volumetric modulated arc therapy for ano-rectal cancer with thermoluminescent dosimetry and image-guidance. Radioth. Oncol. 2014; 111:406–411.

Nascimento AF, Vanhavere F, Souza DR, Verellene D.; Al2O3:C Optically stimulated luminescence droplets: Characterization and applications in medical beams. Rad Meas. 2016; 94:41–8.

Yukihara EG, Doull BA, Gustafson T, Oliveira LC, Kurt K, Milliken ED. Optically stimulated luminescence of MgB4O7:Ce,Li for gamma and neutron dosimetry. J Lumin. 2017; 183:525-32.

Navab Moghadam N, Hosseini Pooya SM, Afarideh H, Kardan MR. Response of TLD and RPL personal dosimeters in a national inter-comparison test program. Int J Radiat Res. 2016; 14(1): 73-76

Duggan L, Hood C, Warren-Forward H, Haque M, Kron T. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry. Phys Med Biol. 2004; 49:4445

Bilski P, Olko P, Burgkhardt B, Piesch E, Waligórski MPR. Thermoluminescence Efficiency of LiF:Mg,Cu,P (MCP-N) Detectors to Photons, Beta-Electrons, Alpha Particles and Thermal Neutrons. Rad Prot Dosim. 1994; 55:31-8.

Paiva F, Siqueira PTD, Cavalieri TA. Comparing the responses of TLD 100, TLD 600, TLD 700 and TLD 400 in mixed neutron-gamma fields. Proceedings of the International Nuclear Atlantic Conference - INAC 2015 São Paulo, SP, Brazil, 4-9, 2015.

Campos LL, Lima MF. Dosimetric properties of CaSO4:Dy Teflon pellets produced at IPEN. Rad Prot Dosim. 1986; 14(4):333-5.

Chopra V, Singh L, Lochab SP, Aleynikovc VE, Oinam AS. TL dosimetry of nanocrystalline Li2B4O7:Cu exposed to 150 MeV proton, 4 MeV and 9 MeV electron beam. Rad Phys Chem. 2014; 102:5-10.

Souza LF, Vidal RM, Souza SO, Souza DN. Thermoluminescent dosimetric comparison for two different MgB4O7:Dy production routes. Rad Phys Chem. 2014; 104:100-103.

Souza LF, Antonio PL, Caldas LVE, Souza DN. Neodymium as a magnesium tetraborate matrix dopant and its applicability in dosimetry and as a temperature sensor. Nucl Instr Meth Phys Res A. 2015; 784:9-13.

Souza LF, Silva, AMB, Antonio PL, Caldas LVE, Souza SO, d’Errico F, Souza DN. Dosimetric properties of MgB4O7:Dy,Li and MgB4O7:Ce,Li for optically stimulated luminescence applications. Rad Meas. 2017; 106:196-199.

Junot DO, Santos MA, Chagas MAP, Couto dos Santos MA, Nunes LAO, Souza DN. Feasibility study of CaSO4:Tb,Yb as a thermoluminescent dosimeter. Rad Phys. Chem. 2014; 95: 119-21.

Junot DO, Barros JP, Caldas LVE, Souza DN. Thermoluminescent analysis of CaSO4:Tb,Eu crystal powder for dosimetric purposes. Rad Meas. 2016; 90:228-32.

Junot DO, Santos AGM, Antonio PL, Rezende MVS, Souza DN, Caldas LVE. Dosimetric and optical properties of CaSO4:Tm and CaSO4:Tm,Ag crystals produced by a slow evaporation route. J Lumin. 2019; In Press.

Charubala CS, Annalakshmi O, Jakathamani S, Sankaran MR, Venkatraman B, Jose MT. Studies on pelletised lithium magnesium borate TL material for eye lens dosimetry. J Radiol Prot. 2019; 39:178-92.

Prokic M. Development of Highly Sensitive CaSO4:Dy/Tm and MgB4O7:Dy/Tm Sintered Thermoluminescent Dosimeters. Nucl Inst Meth. 1980; 175:83-5.

Prokic M. Effect of lithium co-dopant on the thermoluminescence response of some phosphors. Appl Rad Isot, 2000; 52:97-103.

Paluch-Ferszt M, Kozłowska B, Souza So, Souza LF, Souza DN. Analysis of dosimetric peaks of MgB4O7:Dy (40% Teflon) versus LiF:Mg,Ti TL detectors. Nukleonika. 2016; 61:49- 52.

Schulman JH, Kirk RD, West EJ. Use of lithium borate for thermoluminescence dosimetry, Proceedings of the International Conference on Luminescence Dosimetry. Stanford University, CONF-650637. 1967; 113-8.

Kitis G, Furetta C, Prokic M, Prokic V. Kinetic parameters of some tissue equivalent thermoluminescence materials. J Phys D: Appl.Phys. 2000; 33:1252-62.

Furetta C, Prokic M, Salamon R, Prokic V, Kitis G. Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate. Nucl Instr Meth Phys Res A. 2011; 456:411-7.

Prokic M. Lithium borate solid TL detectors. Rad Meas. 2001; 33:393-6.

Pekpaka E, Yilmaz A, Özbayoglu G. An Overview on Preparation and TL Characterization of Lithium Borates for Dosimetric Use. The Open Mineral Processing Journal, 2010; 3:14-24.

Kayhan M, Yilmaz A. Effects of synthesis, doping methods and metal content n thermoluminescence glow curves of lithium tetraborate. J Alloys Comp, 2011; 509:7819-25.

Annalakshmi O, Jose MT, Amarendra G. Dosimetric characteristics of manganese doped lithium tetraborate – An improved TL phosphor. Rad Meas. 2011; 46:669-75.

Patra GD, Singh SG, Tiwari B, Sen S, Desai DG, Gadkari SC. Thermally stimulated luminescence process in copper and silver co-doped lithium tetraborate single crystals and its implication to dosimetry. J Lumin. 2013, 137:28-31.

Mendoza-Anaya D, González-Romero A, Escobar-Alarcón L. Thermally stimulated luminescence of Li2B4O7:Cu,Ag,P+PTFE J. Lumin. 2018; 204:176-81.

Lakshmanan AR. Photoluminescence and thermostimulated luminescence processes in rare-earth-doped CaSO4 phosphors. Progress in Materials Sci. 1999; 44:1-187

Salah N, Sahare PD, Lochab SP, Kumar P. TL and PL studies on CaSO4:Dy nanoparticles. Rad Meas. 2006; 41:40-7.

Zahedifar M, Mehrabi M, Modarres M, Harooni S. Thermoluminescece properties of BeO:Mg nanoparticles produced by sol-gel method. J Nanostructures 2011; 1:199-203

Malthez ALMC, Yoshimura EM., Button VLSN, Freitas MB. Characterization and performance tests of a new OSL/TL personal dosemeter for individual monitoring. Rad Prot Dosim. 2018; 182: 258-65.

Alajerami YSM, Hashim S, Ramli AT, Saleh MA, Kadni T. Thermoluminescence characteristics of the Li2CO3-K2CO3-H3BO3 glass system co-doped with CuO and MgO. J Lumin. 2013; 143:1-4.

Hashim S, Alajerami YSM, Ramli AT, Ghoshal SK, Saleh MA, Abdul Kadir AB, Saripan MI, Alzimami K, Bradley DA, Mhareb MHA. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides. Appl Rad Isot. 2014; 91:126-30.

Rojas SS, Yukimitu K, Camargo ASS, Nunes LAO, Hernandes AC. Undoped and calcium doped borate glass system for thermoluminescent dosimeter. J Non-Cryst Sol. 2006; 352:3608-12.

Ayta WEF, Silva VA, Cano NF, Silva MAP, Dantas NO. Thermoluminescence, structural and magnetic properties of a Li2O–B2O3–Al2O3 glass system doped with LiF and TiO2. J Lumin. 2011; 131:1002–6.

Sardar M, Souza DN, Groppo DP, Caldas, LVE, Tufail M. Suitability of Topaz Glass Composites as Dosimeters Using Optically Stimulated Luminescence Technique. IEEE Trans. Nuc. Sci. 2013; 60: 850-854.

Qiu, J, Shimizugawa, Y, Iwabuchi, Y, Hirao K. Photostimulated luminescence of Ce3+-doped alkali borate glasses. Appl Phys Lett. 1997; 71(1): 43-5.

O’Keeffe S, Fitzpatrick C, Lewis E, Al-Shamma’a AI. A review of optical fibre radiation dosimeters. Sensor Review. 2008; 28:136-42.

Huston AL, Justus BL, Falkenstein PL, Miller RW, Ning H, Altemus R. Optically Stimulated Luminescent Glass Optical Fibre Dosemeter. Rad Prot Dosim. 2002; 101:23-6.

Kalnius CAG, Heidepriem HE, Spooner NA, Monro TM. Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres. Opt Mat Expr. 2012; 2:62-70.

Marini A, Valença JVB, Oliveira RAP, Souza SO, Ciolini R, d'Errico F. Production and characterization of H3BO3-Li2CO3-K2CO3-MgO glass for dosimetry Radiat. Phys. Chem. 2015; 116:92-4.

Nanto H, Nakagawa R, Takei Y, Hirasawa K, Miyamoto Y, Masai H, Kurobori T, Yanagida T, Fujimoto Y. Optically stimulated luminescence in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass. Nucl Instrum Meth Phys Res A. 2015; 784:14-6.

Valença JVB, Silva ACA, Dantas NO, Caldas LVE, d'Errico F, S.O.Souza SO. Optically stimulated luminescence of the [20% Li2CO3+x%K2CO3+(80-x )% 2O3] glass system. J Lumin. 2018; 200:248-53.

Barrera GR, Souza LF, Novais ALF, Caldas LVE, Abreu CM, Machado R, Sussuchi EM, Souza DN. Thermoluminescence and Optically Stimulated Luminescence of PbO–H3BO3 and PbO–H3BO3–Al2O3 glasses. Radiat. Phys. Chem., 2018; 155:150-7.

Valença JVB, Silveira IS, Silva ACA, Dantas NO, Antonio PL, Caldas LVE, d'Errico F, S.O.Souza SO. Optically stimulated luminescence of borate glasses containing magnesia, quicklime, lithium and potassium carbonates. Rad Phys Chem. 2017; 140:83-6.

Knežević Ž, Beck N, Milković Đ, Miljanić S, Ranogajec-Komor M. Characterisation of RPL and TL dosimetry systems and comparison in medical dosimetry applications. Rad Meas. 2011; 46:1582-5

Manninen AL, Koivula A, Nieminen MT. The applicability of radiophotoluminescence dosemeter (RPLD) for measuring medical radiation (MR) doses. Rad Prot Dosim. 2012; 151(1):1-9.

Alsanea F, Wootton, L, Sahoo N, Kudchadker R, Mahmood U, Beddar S. Exradin W1 plastic scintillation detector for in vivo skin dosimetry in passive scattering proton therapy. Phys Med. 2018; 47:58 – 63.

Apfel RE, The superheated drop detector, Nucl. Instrum. Methods 1979; 162(1–3): 603.

Ing H, Birnboim HC. A bubble-damage polymer detector for neutrons, Nucl. Tracks Radiat. Meas. 1984; 8(1–4): 285.

d’Errico F. Radiation dosimetry and spectrometry with superheated emulsions, Nucl. Instrum. Methods Phys. Res., Sect. B. 2001; 184(1–2): 229–254.

Apfel RE, Roy SC. Instrument to detect vapor nucleation of superheated drops. Rev. Sci. Instrum. 1983; 54 (10): 1397–1400.

Taylor C, Montvila D, Flynn D, Brennan C, d’Errico F. An acoustical bubble counter for superheated drop detectors. Radiat. Prot. Dosim. 2006; 120 (1–4):514–517.

d’Errico F, Nath R, Lamba M, Holland SK. A position-sensitive superheated emulsion chamber for three-dimensional photon dosimetry. Phys Med Biol. 1998; 43:1147.

d'Errico, F., Di Fulvio, A. Advanced readout methods for superheated emulsion detectors. Review of Scientific Instruments 2018; 89: 053304 1-8

d’Errico F, Di Fulvio A, Maryanski M, Selici S, Torrigiani M. Optical readout of superheated emulsions, Radiat. Meas. 2008; 43(2–6): 432.

Mijnheer B. State of the art of in vivo dosimetry. Rad Prot Dosim. 2008; 131(1):117–22.

Jahn A, Sommer M, Henniger J. 2D-OSL-dosimetry with beryllium oxide. Rad Meas. 2010: 45(3). 674-6.

Ahmed MF, Shrestha N, Schnell E, Ahmad S, Akselrod MS, Yukihara EG. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam. Phys Med Biol. 2016; 61(21):7551-70.

Ahmed MF, Eller S A, Schnell E, Ahmad S, Akselrod MS, Yukihara EG. Development of a 2D dosimetry system based on the optically stimulated luminescence of Al2O3. Radiat Meas. 2014; 71:187-92.

Sykora GJ, Salasky M, Akselrod MS. Properties of novel fluorescent nuclear track detectors for use in passive neutron dosimetry. Rad Meas. 2008; 43: 1017-23.

Akselrod MS, Fomenko VV, Bartz JA, Dinga F. FNTD radiation dosimetry system enhanced with dual-color wide-field imaging. Rad Meas. 2014; 71:166-73.

Souza SO, d'Errico F, Azimi B, Baldassare A, Alves AVS, Valença JVB, Barros VSM, Cascone MG, Lazzeri L. OSL films for in-vivo entrance dose measurements. Rad Meas. 2017; 106:644-9.

Gore JC, Kang YS, Schulz RJ. Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol. 1984; 29:1189–97

Oldham M. Methods and Techniques for Comprehensive 3D Dosimetry, Advances in Medical Physics. 2014; Medical Physics Publishing, Madison, WI.

Maryanski MJ, Gore JC, Kennan RP, Schulz RJ. NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging. 1993; 11(2):253–8.

Pavoni JF, Neves‐Junior WFP, da Silveira MA, Haddad CMK, Baffa O. Evaluation of a composite Gel‐Alanine phantom on an end‐to‐end test to treat multiple brain metastases by a single isocenter VMAT technique. Med phys. 2017; 44(9): 4869-79.

Schreiner LJ. True 3D chemical dosimetry (gels, plastics): Development and clinical role. J Phys: Conf Ser. 2015; 573: 012046.

d'Errico F, Lazzeri L, Dondi D, Mariani M, Marrale M, Souza SO, Gambarini G. Novel GTA-PVA Fricke gels for three-dimensional dose mapping in radiotherapy. Radiation Measurements 2017; 106: 612-617.

Olsson LE, Petersson S, Ahlgren L, Mattson S. Ferrous sulphate gels for determination of absorbed dose using MRI technique: Basic studies. Phys Med Biol. 1989; 34, 43-52.

Smith ST, Masters KS, Hosokawa K, Blinco J, Crowe SB, Kairn T, Trapp JV. A reduction of diffusion in PVA Fricke hydrogels. J Phys Conf Ser. 2015; 573:012046.

Downloads

Publicado

2019-09-01

Como Citar

Lalic, S. de S., Souza, D. do N., Baffa, O., & d’Errico, F. (2019). Novos Materiais Dosimétricos para Aplicações em Física Médica. Revista Brasileira De Física Médica, 13(1), 24–33. https://doi.org/10.29384/rbfm.2019.v13.n1.p24-33

Edição

Seção

Artigo de Revisão

Artigos mais lidos pelo mesmo(s) autor(es)