Avaliação comparativa entre as propriedades de atenuação de blocos de concreto com hematita e blocos de concreto convencional

Comparative study of the shield of concrete blocks with hematite in relation to common concrete blocks

Paulo R. Costa¹, André A. Bürger¹, Veronica K. Naccache² e Simão Priszkulnik²

¹Laboratório de Dosimetria do Instituto de Física da Universidade de São Paulo (USP) – São Paulo (SP), Brasil ²Departamento de Engenharia da Universidade Mackenzie – São Paulo (SP), Brasil

Resumo

O presente trabalho mostra resultados empíricos das propriedades de dois materiais que podem ser usados em radioproteção: o concreto comum e uma mistura de concreto comum com hematita. Para isto foram utilizadas as técnicas de espectroscopia e medidas de kerma no ar transmitido através de cada um desses materiais com o objetivo de comparar suas propriedades de transmissão.

Palavras-chave: proteção radiológica, blindagem contra radiação, espectropia de raios X, construção.

Abstract

The present work shows results of an empirical evaluation of the transmission properties of two radioprotection materials: an ordinary concrete and an ordinary concrete mixed with hematite. It was used techniques of x-ray spectroscopy and measurements of the air-kerma transmitted through these two materials in order to compare the transmission properties for each one.

Keywords: radiation protection, shielding against radiation, x-ray spectroscopy, construction.

Introdução

A Comissão Internacional de Proteção Radiológica (ICRP) requer a otimização dos métodos utilizados em radioproteção visando garantir o mínimo de exposição do público à radiação, levando em conta fatores sociais e econômicos¹. A proteção utilizada em locais que possuem fontes radioativas para aplicações médicas deve seguir esta filosofia de trabalho. Portanto, barreiras de proteção utilizadas em Radiologia Diagnóstica, Radioterapia e Medicina Nuclear devem ser corretamente dimensionadas e revestidas com o material atenuador visando garantir níveis de radiação nos arredores compatíveis com os níveis de restrição de dose de acordo com o tipo de ocupação presente em determinada área.

No presente trabalho é comparada a atenuação da radiação-X proporcionada por concreto com hematita em relação a um bloco de concreto comum através da obtenção dos espectros transmitidos e medição dos valores de kerma no ar.

Material e Métodos

Neste experimento foram utilizados um tubo de raios X Philips MG450 com filtração adicional de 2 mm de alumínio, uma câmara de ionização Radcal com volume sensível de 180 cm³ para medir o kerma no ar e um espectrômetro de CdTe da Amptek para obter o espectro transmitido.

Autor correspondente: Paulo Roberto Costa - Instituto de Física da Universidade de São Paulo (USP) - Rua do Matão, travessa R, 187 - Cidade Universitária - CEP: 05508-050 - São Paulo (SP), Brasil - E-mail: pcosta@if.usp.br

Os blocos de concreto foram organizados em dois diferentes grupos: um de concreto comum (OC, para *ordinary concrete* em inglês) e outro grupo de concretos com hematita adicionada (HC). Um exemplar dessas placas pode ser vista na Figura 1.

Diversos blocos de ambos os grupos foram confeccionados com diferentes espessuras possibilitando a obtenção de curvas de transmissão.

Valores de kerma no ar foram obtidos para as diferentes espessuras de cada material visando obter as curvas de transmissão. A geometria adotada para obter essas curvas de transmissão é demonstrada na Figura 2. Neste procedimento, a técnica de irradiação utilizada consistiu em corrente anódica de 15 mA e 30 s de tempo de exposição.

Os dados de kerma no ar que compõem as curvas de transmissão, para uma melhor comparação gráfica, foram normalizados e então nelas ajustaram-se curvas que obedecem à Equação de Archer². Visando comparar

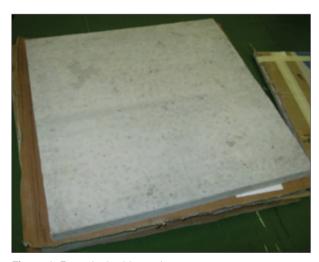
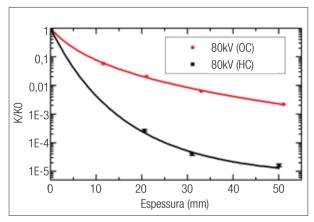
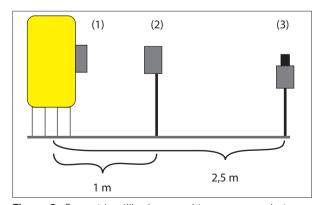
ambos os tipos de blocos para diversas energias, foram obtidas curvas de transmissão para 60, 80, 100, 120, 140 e 150 kV. Nestas tensões também foram obtidas espectros através do espectrômetro de CdTe. Também foi feita uma comparação entre o kerma no ar por mAs para uma determinada espessura e tensão.

Resultados

A. Curvas de Transmissão

As curvas de transmissão para o concreto comum e o concreto com hematita, obtidos com tensões diferentes, estão presentes na Figura 3 e na Figura 4. Os dados de cada curva de transmissão foram ajustados pela equação de Archer.

B. Espectros

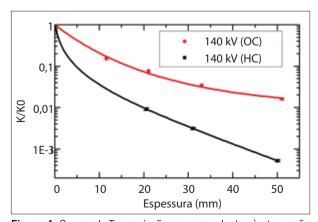
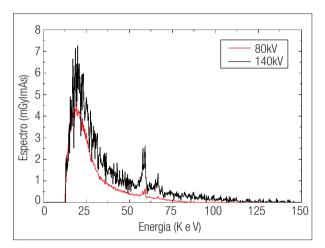

Figura 1. Exemplo dos blocos de concreto.

Figura 3. Curvas de Transmissão correspondentes à atenuação do concreto comum (curva vermelha) e do concreto com hematita (curva preta) para a tensão de 80kV.

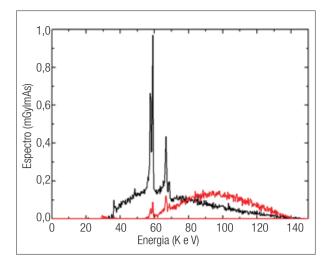
Figura 2. Geometria utilizada para obter as curvas de transmissão. (1) representa o tubo de raios-X, (2) representa onde os blocos de concreto ficavam localizados e (3) representa a câmara de ionização.

Figura 4. Curvas de Transmissão correspondentes à atenuação do concreto comum (curva vermelha) e do concreto com hematita (curva preta) para a tensão de 140 kV.

O espectro primário para tensão de 140 kV aplicada no tubo de raios X está mostrado na Figura 5.


As Figuras de 6 e 7 mostram o espectro transmitido após a passagem pelos blocos de espessura de 20 e 50 mm, respectivamente.

A Tabela 1 mostra uma comparação entre os dados da razão de kerma no ar transmitido por mAs para os diferentes materiais. O sobrescrito OC e o subscrito HC indicam que a razão entre os valores de OC por HC. As incertezas estão expressas com fator de abrangência k=1 e são principalmente devidas ao monitor da câmara de ionização que apresenta um desvio percentual sobre o valor mensurado.


Discussão e Conclusões

Das Figuras 3 e 4 pode-se observar que o kerma no ar para a espessura de atenuador de 50 mm para o OC chega a ser, aproximadamente, 100 vezes maior do que o kerma no ar transmitido pelo HC.

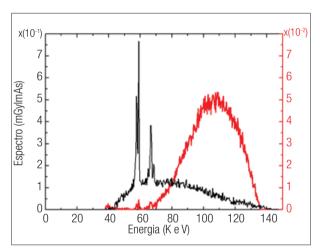

Por outro modo, observando o espectro para a irradiação de 140 kV, notamos que a HC atenua com maior eficiência os fótons de energia menor que 50keV. Este fenômeno

Figura 5. Espectros de 80 e 140 kV com filtração adicional de 2 mmAl.

Figura 6. Espectro para 140 kV e 20 mm de atenuação. A curva vermelha representam o espectro transmitido pelo concreto com hematita e a curva preta para o concreto comum.

Figura 7. Espectro para 140 kV e 50 mm de atenuação. A curva vermelha representam o espectro transmitido pelo concreto com hematita e a curva preta para o concreto comum. A ordenada em vermelho (lado direito e que corresponde à curva de concreto com hematita) está em uma escala 10 vezes menor que a preta, utilizada para os dados do concreto comum.

Tabela 1. Comparação entre os dados da razão de kerma no ar transmitido por mAs para os diferentes materiais.

	,					
Tensão (kV)	Espessura Comparada (mm)					
	20		30		50	
	$\left(\frac{K}{mA.s}\right)_{HC}^{OC}$	Incerteza	$\left(\frac{K}{\text{mA.s}}\right)_{\text{HC}}^{\text{OC}}$	Incerteza	$\left(\frac{K}{\text{mA.s}}\right)_{\text{HC}}^{\text{OC}}$	Incerteza
60	311,6	32,0	92,47	12,94	21,89	3,06
80	76,63	4,51	161,4	12,9	133,3	15,1
100	24,03	1,54	44,32	2,61	149,2	10,7
120	12,47	0,76	18,86	1,08	64,34	3,84
140	8,189	0,485	10,91	0,69	31,07	1,79
150	6,977	0,410	8,911	0,547	23,43	1,34

O sobrescrito OC e o subscrito HC indicam que a razão entre os valores de OC por HC. As incertezas estão expressas com fator de abrangência k=1.

ocorre devido à maior probabilidade de ocorrência do efeito fotoelétrico provocada pela presença do elemento químico Ferro na Hematita, com alto numero atômico.

Na Tabela 1 pode ser observada uma maior eficiência em 20 mm de concreto com hematita usado para 60kV, porém deve-se ressaltar que essa eficiência relativa depende da tensão utilizada.

Agradecimentos

Os autores agradecem o apoio da Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP (processo 2010/12237-7) e do Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (processos 312029/2009-8 e 501988/2010-6) para a realização do presente trabalho.

Referências

- ICRP Publication 103: Recommendations of the ICRP. Annals of the ICRP; 2007;37(2-4).
- Archer BR, Thornby JI, Bushong SC. Diagnostic x-ray shielding design based on an empirical model of photon attenuation. Health Phys. 1983;44:507.