SHIELD 1.0: desenvolvimento de um programa de cálculo de blindagem em radiodiagnóstico

SHIELD 1.0: development of a shielding calculator program in diagnostic radiology

Rômulo R. Santos¹, Jéssica V. Real¹, Bárbara Q. Friedrich², Renata M. da Luz¹ e Ana Maria Marques da Silva²

> ¹Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) – Porto Alegre (RS), Brasil. ²PUCRS – Porto Alegre (RS), Brasil.

Resumo

No cálculo de blindagem em instalações radiológicas, diversos parâmetros são requeridos, tais como fator de ocupação, fator de uso, número de pacientes, distância fonte-barreira, tipo de área (livre ou controlada), radiação (primária ou secundária) e material utilizado na barreira. A otimização do projeto de blindagem exige a análise de diversas opções de estruturação física do ambiente e, principalmente, a obtenção da melhor relação custo-benefício do material utilizado na barreira. Para facilitar o desenvolvimento deste tipo de projeto, foi implementado um programa para cálculo de blindagem em radiodiagnóstico, com base em dados e limites estabelecidos pela National Council on Radiation Protection and Measurements (NCRP) 147 e Portaria SVS-MS 453/98. O programa foi desenvolvido na linguagem C# e apresenta uma interface gráfica para entrada de dados pelo usuário e emissão de relatórios. O módulo implementado inicialmente, denominado SHIELD 1.0, refere-se ao cálculo de barreiras para salas de raios X convencionais. A validação do programa foi realizada através da comparação com os resultados de exemplos de cálculos de blindagem apresentados na NCRP 147.

Palavras-chave: proteção radiológica, radiologia, blindagem contra radiação, normas.

Abstract

In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C# language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

Keywords: radiation protection, radiology, shielding against radiation, standards.

Introdução

Para obter uma proteção radiológica adequada dos profissionais e do público em geral, quando expostos à radiação ionizante, é necessário o uso de barreiras de proteção para minimizar os efeitos adversos das radiações. O cálculo de blindagem tem como finalidade garantir a adequação aos requisitos de proteção radiológica estabelecidos nas regulamentações, no funcionamento das instalações que operam com raios X¹.

Para efetuar o cálculo das espessuras das barreiras de proteção, os dados técnicos e operacionais das instalações radiológicas devem ser considerados, tais como: o fator de ocupação, determinado pela estimativa da fração de ocupação por indivíduos na área em questão durante o período de operação da instalação; o fator de uso, que indica a percentagem da carga de trabalho semanal para uma determinada direção de feixe primário de raios X; o número de pacientes atendidos em um período de tempo; a distância fonte-barreira; o tipo de área (livre ou

Autor correspondente: Profa. Dra. Ana Maria Marques da Silva – Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) – Avenida Ipiranga, 6681, Prédio 10, sala 227 – CEP: 90619-900 – Porto Alegre (RS), Brasil – E-mail: ana.marques@pucrs.br

controlada); o tipo de radiação (primária ou secundária) e o material utilizado na barreira^{2,3}.

Em salas nas quais existem fontes emissoras de raios X utilizadas para o diagnóstico médico, devem ser seguidas as publicações atualmente reconhecidas, a exemplo dos procedimentos da *National Council on Radiation Protection and Measurements* documento 147 (NCRP 147)³, que descrevem os princípios básicos requeridos para cálculo de blindagem para instalações de raios X diagnósticos, além das determinações nacionais impostas pela Portaria do Serviço de Vigilância Sanitária do Ministério da Saúde nº 453 de 01 de junho de 1998².

Cabe ao físico médico avaliar a dinâmica do serviço de radiologia e auxiliar no desenvolvimento do projeto de blindagem utilizada para a proteção radiológica.

A falta de ferramentas computacionais amigáveis disponíveis para cálculo de blindagem dificulta a otimização deste tipo de projeto, que exige a análise de diversas opções de estruturação física do ambiente e, principalmente, a escolha de materiais e espessuras adequadas para as barreiras de proteção.

Este cálculo usualmente é realizado por meio de planilhas eletrônicas de cálculo, permitindo pequena flexibilidade na exploração dos parâmetros utilizados no cálculo e dificultando a obtenção da melhor relação custo-benefício de utilização de materiais distintos nas barreiras.

O objetivo deste trabalho é apresentar o desenvolvimento de um programa para cálculo de blindagem, com base em dados e limites estabelecidos pelo NCRP 147 e Portaria SVS-MS 453/98. A primeira versão do programa, denominado SHIELD 1.0, apresenta o módulo de cálculo de blindagem para uso em salas de radiologia convencional.

Material e Métodos

Para o desenvolvimento do programa, inicialmente foi realizado um levantamento dos documentos referentes ao cálculo de blindagem em radiodiagnóstico. Os documentos analisados foram a NCRP 147 e a Portaria SVS-MS 453/98. A metodologia de cálculo foi baseada na NCRP 147, da qual foram extraídos os limites de kerma no ar, os fatores de ocupação e uso, assim como os gráficos de fator de transmissão para diferentes materiais e finalidade da sala radiológica. Para atendimento das normativas nacionais, estabelecidas na Portaria SVS-MS 453/98, foram identificados os limites de kerma no ar e os fatores de ocupação e uso.

O fluxograma apresentado na Figura 1 mostra um esquema do processo de entrada de dados do programa.

Inicialmente, o usuário registra os dados da instituição e do equipamento pelo usuário. Após a escolha das normas que serão utilizadas (NCRP 147 e/ou Portaria SVS-MS 453/98), o usuário escolhe os parâmetros que serão utilizados no cálculo da barreira, relacionados à dinâmica do serviço (tipo de área, fator de ocupação, distância fonte-barreira, número de pacientes semanal e fator de uso). O tipo de sala radiológica e a escolha da radiação

(primária, secundária) determinam o acesso às tabelas de dados dos fatores de transmissão. Após a realização do cálculo de blindagem com os materiais escolhidos pelo usuário, existe a opção de emissão de um relatório contendo o resumo dos parâmetros de cálculo e resultados.

O programa permite a inclusão de novos materiais, por meio da incorporação de novas tabelas de dados de fatores de transmissão.

O programa foi desenvolvido na linguagem Microsoft Visual C# Express. O programa, em sua primeira versão (SHIELD 1.0), possui aplicação em salas de raios X convencionais. Ele apresenta uma interface gráfica para sistema operacional Windows para entrada de dados pelo usuário e emissão de relatório.

A extração dos dados dos gráficos de fator de transmissão da NCRP 147 foi realizada através do software livre Engauge Digitizer 4.04, que converte uma imagem em dados discretizados. Devido a limitações na extração de dados dos gráficos por este programa, foi necessário aplicar uma transformação logarítmica normalizada aos dados. Para a obtenção da espessura da barreira, o valor de transmissão para a situação em estudo foi obtida por meio de uma interpolação polinomial nos extremos e uma interpolação spline Catmul-Rom nos outros valores do gráfico⁵.

A validação do programa foi realizada através da comparação direta com resultados dos exemplos de cálculos de blindagem (Dedicated Chest Unit - página 73; Floor of Radiographic Room – p.76; Chest Image Receptor – p. 79), apresentados na NCRP 147 para salas de raios X convencionais.

Resultados

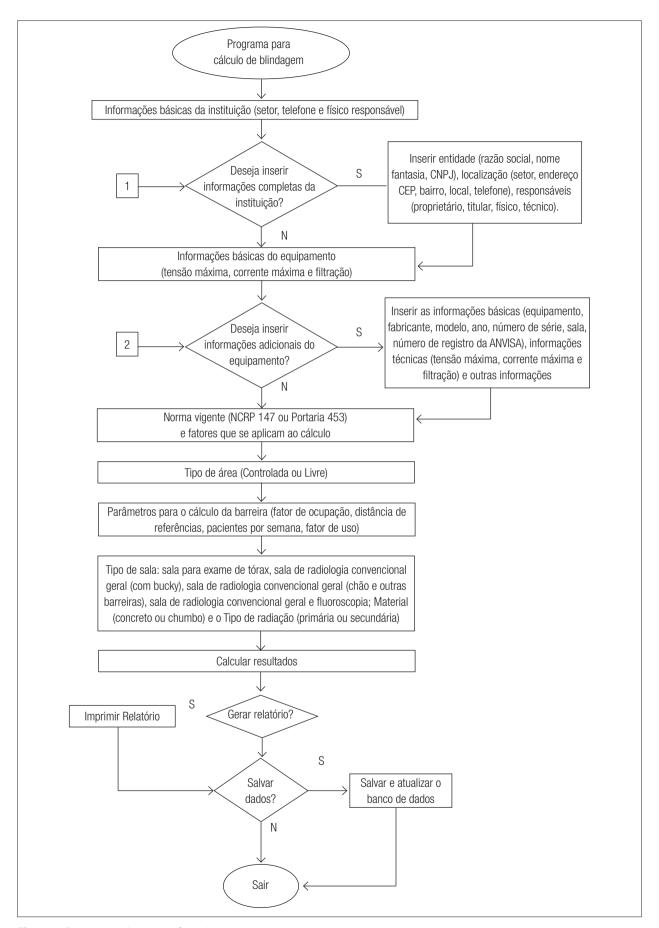
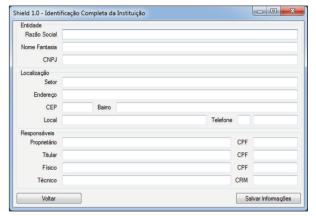
A Figura 2 apresenta a interface inicial do programa SHIELD 1.0, na qual o usuário pode escolher entre a inserção de dados completos da instituição e equipamento ou dados resumidos. A opção da inclusão de dados resumidos visa facilitar a realização de testes preliminares de cálculo de blindagem.

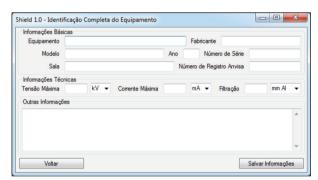
A Figura 3 mostra a interface de entrada de dados completos da instituição no programa. Os dados completos tornam-se importantes por ocasião da emissão dos relatórios de cálculo de blindagem para fins de autorização e renovação de funcionamento dos serviços.

A interface de entrada de dados para a identificação completa do equipamento é apresentada na Figura 4. No caso de equipamentos de raios X convencionais, as informações mínimas são a tensão e corrente máximas e filtração.

A interface de entrada dos parâmetros de cálculo de blindagem é apresentada na Figura 5. O último campo (Resultados do Cálculo) somente é preenchido quando o botão "Calcular" é acionado.

O relatório é emitido com os campos preenchidos durante a execução do programa, resultando em um arquivo de formato *rich text* (relatório.rtf), o qual pode ser facilmente aberto por qualquer editor de texto. Na Figura 6, é apresentado um exemplo de relatório gerado pelo programa SHIELD 1.0.


Figura 1. Representação esquemática do programa.

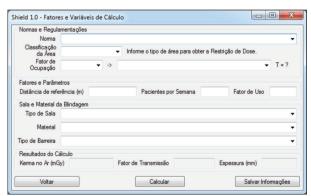

Figura 2. Interface inicial do programa SHIELD 1.0.

Figura 3. Interface de entrada de dados completos da instituição no programa.

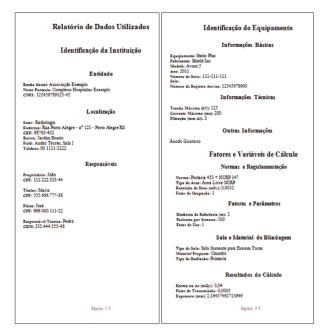

Figura 4. Interface de entrada de dados para a identificação completa do equipamento.

Figura 5. Interface para inserção dos valores e variáveis utilizados no cálculo de blindagem.

Discussão e Conclusões

Este trabalho apresenta o desenvolvimento da primeira versão de um programa para cálculo de blindagem, denominado SHIELD 1.0, com base em dados e limites estabelecidos pelo NCRP 147 e Portaria SVS-MS 453/98.

Figura 6. Relatório gerado pelo programa SHIELD 1.0, contendo as informações sobre a instituição, o equipamento, os parâmetros e condições do cálculo e o resultado do cálculo de blindagem.

Os testes de validação mostraram que o programa SHIELD 1.0 calcula, com precisão, a espessura de barreiras, podendo ser aplicado a situações reais de planejamentos de projetos físicos para a construção de blindagens em serviços de radiologia convencional, utilizando o método gráfico desenvolvido na NCRP 147.

Este módulo do programa SHIELD é uma versão inicial, que pretende ser ampliada para a incorporação de cálculos para outros serviços de diagnóstico e tratamento médico, tais como mamografia, tomografia computadorizada por raios X, medicina nuclear e radioterapia.

Além disso, existe a possibilidade da inclusão de novos materiais, particularmente aqueles mais utilizados no Brasil, com intuito de gerar uma melhor relação custo-benefício do material utilizado na barreira, otimizando assim a proteção radiológica de profissionais e do público em geral.

Referências

- Frimaio A. Desenvolvimento de um material cerâmico para utilização em proteção radiológica diagnóstica. [Dissertação de Mestrado]. São Paulo: Instituto de Pesquisas Energéticas e Nucleares; 2006.
- Brasil. Ministério da Saúde. Diretrizes de Proteção Radiológica em Radiodiagnóstico Médico e Odontológico. Portaria SVS-MS 453/98. Diário Oficial da União. 1998 Jun 01. Brasília: 1998.
- National Council on Radiation Protection and Measurements NCRP. Structual Shielding Design for Medical X-Ray Imaging Facilities. NCRP Report No. 147. Bethesda; 2004.
- Engauge Digitizer Digitizing software. [Acesso em 2013 Abr 29]. Disponível em: http://digitizer.sourceforge.net/
- Catmull E, Rom R. A class of local interpolating splines. In Computer Aided Geometric Design. R. E. Barnhill RE, Reisenfeld RF, editors. New York: Academic Press; 1974. p. 317-26.