
Artigo Original 
Revista Brasileira de Física Médica. 2017;11(3):33-37. 

Associação Brasileira de Física Médica ® 33 

Development of Novel Methods to Investigate the Brain at Rest 
 

Desenvolvimento de Novos Métodos para Investigação do Cérebro durante 
o Estado de Repouso  

 
Sergio Luiz Novi Junior1, Wagner Alan Aparecido da Rocha, Alex de Castro Carvalho, 

Giovanni Hering Scavariello, Rodrigo Menezes Forti, Andres Fabian Guiroga Soto, 
Vinicius Romera Oliveira, Clarissa Lin Yasuda, Rickson Coelho Mesquita 

 
1Universidade Estadual de Campinas, Campinas, Brasil 

 
 

Resumo 
O funcionamento cerebral parece ser altamente organizado mesmo na ausência de tarefas específicas. 
Neste trabalho usamos teoria de grafos num experimento de neuroimagem multimodal com ressonância 
magnética funcional e espectroscopia no infravermelho próximo para entender melhor a conectividade 
funcional durante o estado de repouso. Nossos resultados sugerem que, independentemente das 
diferenças entre voluntários, suas propriedades de grafos é muito similar. Além disso, propomos uma 
nova abordagem para analisar a conectividade de um grupo baseado na frequência de distribuição de 
links.  
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Abstract 
Brain function appears to be highly organized even in the absence of specific tasks. In this work we use 
graph theory in a multimodal neuroimaging experiment employing functional magnetic resonance imaging 
and near-infrared spectroscopy to better understand functional connectivity during the resting state. Our 
results suggest that, despite differences across subjects, their graph properties are very similar. In 
addition, we propose a novel approach to analyze group connectivity based on frequency distribution of the 
links.  
Keywords: neuroimaging; functional connectivity; NIRS; fMRI; graph theory.  
 
 
1. Introduction 
 The ability to probe brain function noninvasively 
opened new directions in neuroscience in the early 
1990s. With temporal acquisition of sequential 
images of magnetic resonance imaging at 0.5 Hz, it 
became possible to infer cortical regions 
statistically associated with the performance of a 
given task, such as finger tapping or visual 
stimulation1. This approach, known as functional 
magnetic resonance imaging (fMRI), has become 
standard in functional neuroscience to understand 
brain function due to an external task. The blood-
oxygen level dependent (BOLD) signal, the most 
common fMRI measurement, explores changes in 
the local magnetic field due to variations of deoxy-
hemoglobin concentration (Hb) in blood vessels. 
Compared to baseline, Hb varies during a task due 
to neurovascular coupling2.  
 In parallel with the advances in fMRI other 
emerging neuroimaging techniques appeared. One 
alternative approach to probe brain function is 
near-infrared spectroscopy (NIRS)3,4. Briefly, NIRS 
employs near-infrared light (~700 – 900 nm) to 
measure hemoglobin concentration changes in the 
brain noninvasively and with temporal resolution of 
up to 50 Hz. Over the years NIRS has also been 
shown to be able to probe brain function due to 
external tasks5. 

 However, even in the absence of a specific task, 
the brain takes up to 20% of the energy consumed 
by the body6. For a system to demand so much 
energy at rest, it must be highly organized. Indeed, 
several studies with fMRI and/or NIRS have 
reported the presence of functional networks during 
the resting state (i.e., in the absence of a specific 
brain function)7–10. These studies rely on the 
comparison of low-frequency (< 0.1 Hz) 
spontaneous fluctuations of the neuroimaging 
signal across different regions of the brain. 
Interestingly, recent studies have suggested that 
neuropsychiatric disorders, as well as aging, 
deteriorate reliable features commonly seen in 
healthy brains11–14.  
 In resting state functional connectivity, networks 
are found by correlating the signal from all regions 
of the brain with a specific region chosen a priori. 
Although this approach has allowed progress about 
our understanding of the brain, it is very limited 
since it does not take into account the overall 
spatial-temporal variations of the brain. A more 
complete picture of brain function during the resting 
state can be achieved by using graph theory8.  
 In this work we explore our recent advances in 
applying graph theory approaches to understand 
the NIRS and BOLD-fMRI signals of the human 
brain during the resting state. In particular, we 



Revista Brasileira de Física Médica. 2017;11(3):33-37. 

34 
Associação Brasileira de Física Médica ® 

present a novel perspective to analyze functional 
connectivity data based on the frequency maps, 
which aims to answer the question of what 
connections are common across a group of 
subjects. 
 
2. Materials and Methods 
2.1. Subjects and Experimental Protocol 
 Twenty healthy subjects (3 female) with age 
between 18 to 28 years old were recruited for this 
study. All subjects provided their informed consent 
previous to data acquisition. The Ethical Committee 
at the University of Campinas approved the study 
protocol. 
 Subjects were laid down inside the MRI and 
required to perform 5-min baseline runs from 3 to 6 
times, totalizing 101 runs. For each run, subjects 
were instructed to close their eyes and not focus 
attention in any specific task. 
 
2.2. Data acquisition and pre-processing 
 We simultaneously acquired data with fMRI and 
NIRS. The fMRI protocol was performed in a 3T 
MRI instrument (Philips Achieva), and included 
structural and functional images. The structural 
images were T1-weighted with 1x1x1 mm3 
resolution (TE = 3.2 s, TR = 7 ms, TI = 900 ms, 8o 
flip angle). The functional images were T2*-
weighted gradient echo EPI sequences with 3x3x3 
mm3 spatial resolution (TE = 30 ms, TR = 2 s, 90o 
flip angle). 
 The NIRS measurement employed a 
commercial instrument (NIRScout, NIRx Medical 
Systems) with 32 detectors and 16 sources with 2 
wavelengths each (760 and 850 nm). The optical 
probe contained 64 source-detector combinations 
(channels) that covered the whole head, including 
frontal, temporal, parietal and occipital lobes. Prior 
to acquisition, the channels were digitized with a 
magnetic digitizer (Polhemus, Fastrak) for later 
superposition with MRI structural images. The 
NIRS temporal resolution was 7.8 Hz. 
 After acquisition, the BOLD signal from fMRI 
was preprocessed using standard methods from 
the literature15. Briefly, we employed slice-timing 
correction and used data from movement, white 
matter and cerebrospinal fluid as regressors. Then, 
the fMRI images were parceled onto 90 regions of 
interest (ROIs) using a standard anatomical atlas16. 
We applied removal of motion artifacts to remove 
spurious correlations due to motion15. We corrected 
motion artifacts with MatLab homemade scripts,  
while the other preprocessing steps were 
performed with the UF2C toolbox17. 
 Light intensities from each channel in the NIRS 
data were converted to oxy- (HbO2), and deoxy-
hemoglobin (Hb) concentration changes with the 
modified Beer-Lambert law18. Total-hemoglobin 
concentration (HbT) was obtained by summing 
HbO2 and Hb. Channels with low signal-to-noise 
ratio (SNR < 8) were also discarded from analysis. 
In practice, the SNR quality check led to an 
average (standard deviation) loss of 13 (8) 

channels. Motion artifacts were visually inspected 
and manually removed from the data, and the 
global signal regression was removed with a 
Principal Component Analysis (PCA) filter19. All 
NIRS processing steps were performed on MatLab 
homemade scripts based on HOMER toolbox18.  
 In both fMRI and NIRS data, the low-frequency 
fluctuations were obtaining by band-pass filtering 
the data in the region between 0.008 and 0.09 Hz.  
 
2.3. Graph construction and analysis 
 We computed graphs independently for each 
hemodynamic signal (BOLD or hemoglobin 
concentration). For a given signal, we defined each 
ROI (fMRI) or channel (NIRS) as a node. The link 
between two nodes was based on the Pearson 
correlation coefficient, ρ, between the times series. 
We set a threshold for ρ, so that for ρ ≥ threshold 
we established a link between two nodes. 
Otherwise, there was no link. Since the threshold 
introduces a degree of freedom in the analysis, we 
varied the threshold from 0.05 to 0.75. 
 We then computed global graph parameters for 
each run of each subject as function of the 
correlation threshold. We analyzed the total 
number of links of the graph (N), the average 
degree (K), the distribution of the degree of the 
nodes by measuring the standard deviation of the 
degree (StdK), and the clustering coefficient (CC) 
of the graph20–22. 
 In order to analyze group results, we decided 
not to employ averages but rather to compute 
frequency of appearance. Therefore, our approach 
allows us to analyze common features between 
subjects, rather than analyzing average behavior 
that might not reflect any specific subject. To 
extract a graph that carried robust features of each 
subject, we fixed the number of links of each graph 
as 20% of the maximum possible number of links. 
With this approach, we created binary graphs by 
keeping only the strongest connections of each run 
as measured by the Pearson correlation coefficient. 
In addition, by proceeding with this method, we 
could account for both the different number of 
nodes of each network and the variability in the 
potential physiological contamination of the signal 
from each subject. (Note, subjects who were more 
contaminated by physiological noise naturally 
present connections with higher correlation values. 
We have discussed this approach on previous 
works3,8). Once we had one graph for each run, we 
combined all graphs of all runs from the same 
subject, and kept only the links that were presented 
in at least 50% percent of the runs of each subject. 
We last combined resultant graphs of all subjects 
to create a frequency network, which carries the 
frequency that each connection appeared over the 
subjects. 
 
3. Results and Discussion 
 As an illustration, Figure 1 shows resultant 
graphs for two representative subjects obtained 
with HbO2 data from NIRS when the threshold for ρ 
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was set at 0.5. We obtained similar graphs for 
other thresholds and hemodynamic signals. By 
visually comparing the two NIRS-based graphs in 
Figure 1, one can clearly see that the graphs 
between the two subjects are very different, 
although there are few similar links. From one end, 
a degree of similarity is expected since the human 
brain is a result of evolution and works through the 
development of structure and function. On the 
other hand, the result presented in Figure 1 is 
somewhat expected since there is no reason to 
expect that the brain from two different persons 
would function similarly during the experiment.  
 

 
Figure 1. Top view of resultant graphs for two representative 

subjects using the HbO2 signal and ρ=0.5. The black dots 
represent the nodes (in this case, NIRS channels) and the blue 

lines represent the links (in this case, channels with ρ ≥ 0.5).  
 
 
 Despite the difference in the connections of the 
two graphs, their global parameters are strikingly 
similar. The average degree of the graphs from 
subjects A and B in Figure 1 are both 0.13, with a 
spread (i.e., standard deviation) of 0.07 and 0.09, 
respectively. The clustering coefficient for subject A 
in Figure 1 is 0.53; for subject B this parameter is 
0.58. This result suggests that, despite connections 
may vary across different subjects, and even for 
the same subject at different periods of time, the 
type of graph for the human brain at rest may have 
similar properties.  
 The similarity of the graph parameters for all 
subjects in our cohort becomes evident in the small 
error bars of Figure 2, which represent the 
standard error of each graph parameter across all 
subjects, for all hemodynamic signals and different 
correlation thresholds.  
 To quantify the variability across subjects, we 
calculated the ratio between the standard error and 
the mean value of each parameter for each 
correlation threshold. We observed that the mean 
variations across subjects for the average degree 
were on the order of 15% for all hemodynamic 
signals. The variability of the clustering coefficient 
is even smaller, reaching no more than 7%.   
 

 
Figure 2. Variation of the graph parameters across all 20 

subjects for all hemodynamic signals and thresholds used. The 
parameters computed were the total number of links (N), the 

average degree (K), the standard deviation of the degree 
distribution (StdK) and the clustering coefficient (CC). Oxy- 
(HbO2, red), deoxy- (Hb, bllue) and total-hemoglobin (HbT, 

green) concentrations come from NIRS, while the BOLD signal 
(black) comes from fMRI. The error bars represent the standard 

error across all subjects.  
 

 Regarding the dynamics of the graph metrics as 
function of the order parameter, Figure 2 shows 
that the graph parameters decay as the correlation 
threshold increases. This behavior is expected 
since an increase in the threshold means that 
lesser connections would be available. In addition, 
the distribution of the number of links for each node 
tends to increase for low thresholds, reaching its 
maximum at approximately 0.25. This result 
reflects that the high density of connections for the 
graphs built up to this threshold is probably due to 
spurious noise in the data.  
 Last, we attempted to quantify common patterns 
in the graphs for the whole group. Figure 3 shows 
frequency graphs that were created based on the 
frequency of appearance of each link across all the 
subjects for each of the hemodynamic signals. This 
approach allows investigation of the connectivity 
links that are present in almost all subjects. In this 
study, we observed that despite high variability of 
the links across subjects (Figure 1), a total of 54, 
41, 50 and 301 links were consistently present in at 
least 75% of all subjects when we considered, 
respectively, HbO2, Hb, HbT and BOLD frequency 
graphs. (Note, the higher number of nodes (90) in 
the BOLD graph is one of the reasons for the 
higher number of links in this graph.) 
 Concerning location, the most frequent links are 
consistently observed in the frontal-parietal region, 
which can be related to superior tasks. By 
analyzing individual graphs for each subject, it is 
possible to note that other brain regions exhibit a 
high density of links, particularly between regions 
that are symmetrically located or among areas that 
share the same functionality. However, most of 
these connections are subject-specific and did not 
achieve significant frequency. The relatively low 
number of common connections reinforces the fact 
that the variability across subjects should be 
neglected.  
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Figure 3. Frequency graphs for (A) oxy-hemoglobin, (B) deoxy-

hemoglobin, (C) total-hemoglobin and (D) BOLD-fMRI. The 
black dots represent the nodes of the graph, while the red dots 
are the hubs (i.e., most connected nodes). The links are color-
coded by their frequency of appearance across all 20 subjects.  

  
 Among several cortical regions measured, few 
of them were highly connected to other regions 
(i.e., they were hubs in the graph). These regions 
were identified as red dots in Figure 3. Overall, we 
found 8, 8, 5, and 4 regions in the HbO2, Hb, HbT 
and BOLD graphs. Most of the nodes were located 
in the frontal lobe, with slightly predominance from 
the left hemisphere. We previously found a similar 
left hemisphere predominance for another NIRS 
data cohort, and this asymmetrically result has 
been previously reported in the literature14. 
 Although the above-cited results are very 
encouraging, it is important to highlight their 
limitations regarding its interpretation. First, NIRS 
and fMRI have different time-series properties 
despite its common hemodynamic origin. fMRI 
temporal acquisition is slow (~ 2 s) which leads to 
aliasing from global, systemic physiology that 
cannot be removed from data23. On the other hand, 
NIRS high temporal resolution (~ 100 ms) provides 
autocorrelated time-series over several data points, 
which can lead to spurious high Pearson 
correlation coefficients24. Concerning its biological 
interpretation, it is important to remind that the 
hemodynamic changes measured by either fMRI or 
NIRS may not be directly related to neural 
changes. Although several studies show an 
unquestionable correlation between neural 
changes and NIRS/fMRI signals, the relationship 
underlying neurovascular coupling as well as its 
relationship to each observable are still not fully 
understood. Therefore, the connection and 
interpretation between results derived from either 
NIRS or fMRI, as well as their comparison, must 

take into account the different and inherent 
properties of each technique.   
 
4. Conclusions 
In this work we aimed to better understand the 
spatial-temporal interactions of brain function at 
rest by using graph theory in multimodal 
neuroimaging data. We simultaneously employed 
NIRS and BOLD-fMRI in 20 healthy, young 
subjects. Unlike the majority of the previous 
studies, we attempted to characterize the individual 
resting state graphs. We could observe that, 
despite different subjects have different 
connectivity patterns, the characteristic of their 
graphs (as measured by its global graph 
properties) are surprisingly similar as pointed by 
the small population variances. The inter-subject 
variability ranged from 10% to 15%, depending on 
the parameter analyzed. This result suggests that 
the resting state connectivity maps can be thought 
of different microstates associated to one single 
macrostate defined by its properties. On the other 
hand, the different connectivity patterns for each 
subject led us to think about common 
characteristics across subjects. In order to 
appropriately address this scientific question, we 
derived a novel graph based on frequency 
distribution of links. We strongly believe that the 
analysis and further validation of frequency graphs 
can lead to significant contributions regarding 
common characteristics of groups of subjects, but 
at the same time will allow us to better understand 
functional brain individualization.  
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