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Resumo 
Objetivo: A avaliação do estadiamento e prognostico do Linfoma Hodgkin usando métodos de aprendizado de máquinas 
ainda é pouco explorado. Este estudo explora características radiômicas e propõe um novo modelo de aprendizado de 
máquinas para predizer falha no tratamento a partir de imagens PET. Métodos: Treze características radiômicas foram 
extraídas de imagens PET de 51 indivíduos com Linfoma Hodgkin com resposta ao tratamento, e 6 indivíduos com falha 
no tratamento de acordo com o critério de Lugano. Foram feitas análises univariadas das áreas abaixo da curva ROC (AUC) 
para a seleção de características radiômicas, e a correlação de Pearson foi usada para avaliar a redundância entre as 
características radiômicas. Um algoritmo de aprendizado de máquinas foi desenvolvido usando 6 grupos de indivíduos, 
cada grupo contendo 1 indivíduo refratário ao tratamento. Os 6 grupos foram combinados em um esquema de validação 
cruzada com 15 camadas usando amostragem aleatória com reposição dos indivíduos com resposta ao tratamento. Cada 
camada contendo 4 grupos para construção do modelo e 2 grupos para validação. O desempenho do algoritmo foi verificado 
a partir dos resultados das 15 combinações de cada uma das 2 camadas de validação, usando dois métodos (M1 e M2) 
para classificação do tumor, tanto no nível da lesão quanto no nível do paciente. Resultados: As características radiômicas 
zone percentage (ZP), high intensity large area emphasis (HILAE), entropy, complexity e standardized uptake value of 
maximum pixel (SUVmax) foram preditores independentes de falha no tratamento. O algoritmo de aprendizado de máquina 
desempenhou com AUC=0,86 (M1) e AUC=0,96 (M2) para classificar “tumores individuais”, e no “nível paciente” 
desempenhou com sensibilidade = 80,0%/ especificidade = 88,3% (M1) e sensibilidade = 100%/ especificidade = 100% 
(M2). O algoritmo desempenhou melhor que o método de estadiamento Ann Arbor, que alcançou, respectivamente, 83,3% 
e 31,7% para sensibilidade e especificidade. Conclusões: A avaliação de imagens basais de 18F-FDG PET de pacientes 
com Linfoma Hodgkin usando aprendizado de máquinas obteve melhor desempenho em relação ao estadiamento Ann 
Arbor e em relação aos marcadores MTV e SUVmax, possibilitando melhorar a classificação de pacientes com maior risco 
de falha no tratamento. 
Palavras-chave: imagem molecular, aprendizado de máquinas, linfoma Hodgkin, medicina de precisão. 
 
Abstract 
Purpose: Hodgkin Lymphoma staging and prognostic evaluation through radiomic and machine learning (ML) methods have 
been little explored. This study explores radiomic features and proposes a new ML radiomic model to predict treatment 
failure in Hodgkin lymphoma patients from PET images. Methods: 13 radiomic features were extracted from PET images of 
51 subjects with Hodgkin's Lymphoma with response to therapy and 6 subjects with treatment failure as classified by the 
Lugano criteria for lymphoma response. Univariate analysis was performed for feature selection employing the areas under 
ROC curves (AUC), and Pearson correlation was assessed to reduce redundancy in the feature space. An ML algorithm 
was developed and trained-validated using 6 groups of subjects, each group containing 1 treatment-refractory individual. 
The 6 groups were combined in a 15-fold cross-validation using random sampling with the replacement of non-progressive 
disease subjects at each fold. Each fold included 4 groups for model building and 2 groups for model validation. The ML 
performance was assessed through 15 combinations of two-fold validation samples, deriving two ML methods (M1 and M2) 
for tumor classification at the tumor and patient levels. Results: The features zone percentage (ZP), high-intensity large area 
emphasis (HILAE), entropy, complexity, and standardized uptake value of maximum pixel (SUVmax) were independent 
predictors of treatment failure. The ML algorithm performed with AUC=0.86 (M1) and AUC=0.96 (M2) to classify "individual 
tumors" and at "patient level" performed with sensitivity = 80.0% /specificity = 88.3% (M1) and sensitivity = 100% /specificity 
= 100% (M2). The ML outperformed the Ann Arbor staging that achieved, respectively, 83.3% and 31.7% for sensitivity and 
specificity. Conclusions: Evaluation of baseline 18F-FDG PET scans of individuals with Hodgkin's lymphoma using an ML 
radiomic model performed better than Ann Arbor staging and MTV and SUVmax, allowing improved classification of patients 
at higher risk of treatment failure.  
Keywords: molecular imaging, machine learning, Hodgkin lymphoma, precision medicine. 
  



Artigo Original 

Revista Brasileira de Física Médica (2023) 17:680 

 
https://doi.org/10.29384/rbfm.2023.v17.19849001680 Associação Brasileira de Física Médica ® 

 
1. Introduction 

Positron emission tomography (PET) and 
computed tomography (CT) hybrid imaging (PET/CT) 
using 18F–fluorodeoxyglucose (18F-FDG) holds a 
major place in staging Hodgkin Lymphoma (HL) with 
the ability to detect the extent of HL and bone marrow 
involvement allowing a non-invasive procedure for the 
staging of nodal and extra-lymphatic disease. 
Furthermore, 18F-FDG PET/CT also introduced a 
significant improvement in response evaluation when 
compared to conventional imaging1. In addition to 
monitoring changes during treatment, recent studies 
have shown that baseline PET has the potential to 
predict response to therapy by measuring the total 
metabolic tumor volume (TMTV) biomarker 2,3.  

Classical measurements of tumor uptake 
(SUV and TMTV) ignore the intratumoral 18F-FDG 
spatial distribution (i.e., tumor heterogeneity). The 
rapidly emerging field of "radiomics" computes 
quantitative image features that characterize this 
intratumoral heterogeneity or other tumor 
phenotypes, leading to a promising field in the era of 
precision medicine. There is growing evidence that 
radiomics could add useful information to baseline 
PET, CT, or MR to predict outcomes in some types of 
cancer 4. Bouallègue et al. investigated the feasibility 
of textural and morphological features in predicting 
early metabolic response assessed from baseline 18F-
FDG PET on a heterogeneous cohort of Hodgkin and 
non-Hodgkin lymphoma patients 5. Only a few studies 
have demonstrated that machine learning (ML) from 
baseline PET radiomics in HL can predict treatment 
outcomes 6,7, suggesting that radiomics may enhance 
the predictive capability of conventional metrics. On 
the other hand, Lartizien and colleagues 
demonstrated the use of radiomics 18F-FDG PET/CT 
in HL patients to differentiate cancer lesions from 
hypermetabolic inflammatory foci 8.  

In this work, we explored radiomic features 
extracted from baseline 18F-FDG PET scans of HL 
patients and developed ML classifiers to predict 
treatment failure. 

2. Methods 

2.1. Scanner, imaging, and patient selection 

18F-FDG PET/CT imaging was performed on a PET 
Siemens Biograph TruePoint TrueV (Knoxville, TN, 
USA) combined with a 16-slice helical CT scanner 
(Emotion 16; Siemens). PET images were corrected 
for random coincidences, normalization, dead time 
losses, scatter, and attenuation.  

Interim PET (iPET) of HL patients is recommended 
most often after two cycles to assess early response 
to therapy. The purpose is to confirm the effectiveness 
of treatment,  using iPET to tailor treatment according 
to individual response1. As the time of iPET is not 
mandatory, clinicians in our institution refer patients 
for response evaluation either during treatment (iPET) 
or after the treatment is over (post-therapy, pt-PET). 

Hereafter, we will consider both as pt-PET. Then HL 
18F-FDG PET/CT exams that performed both baseline 
and pt-PET within 12 months from the beginning of 
treatment were selected (mean: 4.5, range: 1.4-11.8). 
Exclusion criteria were hyperglycemia at the time of 
tracer administration or a delay exceeding 90 min 
between 18F-FDG injection and image acquisition. A 
total of 57 subjects were selected. An intravenous 
FDG injection and acquisition duration was performed 
according to the European Association of Nuclear 
Medicine (EANM) guidelines9 and applying the 
method previously reported by Menezes et al. for 
noise standardization10,11. Subjects fasted for 6 hours 
prior to the 18F-FDG injection. The median injection-
to-scan time was 66 minutes (standard deviation 10 
minutes). Images were reconstructed on a 168x168 
matrix size (4.07 x 4.07 mm² voxels) with 3 mm slice 
thicknesses and using OSEM3D (ordered-subsets 
expectation maximization) algorithm with 3 iterations, 
21 subsets, and a 5 mm gaussian filter. These 
parameters provide quantitatively harmonized images 
according to EANM. 

The study population was selected based on the 
International Classification of Diseases, Tenth 
Revision (ICD-10) (C81.X) for HL. The pt-PET was 
evaluated according to Lugano classification 
lymphoma response criteria, a score derived from the 
Deauville 5-point scale (5PS) which scores 1 to 3 are 
considered Complete Metabolic Response (CMR), 
scores 4 and 5 are considered either No-Metabolic-
Response (NMR), Partial Response (PR), or 
Progressive Disease (PD) depending on the evolution 
compared to baseline evaluation (no change from 
baseline, reduced uptake compared to baseline, and 
increased uptake or new lesion, respectively). This 
classification results in standardized reports with good 
prognosis discrimination and inter-observer 
reproducibility 1. We also conducted a review of each 
patient's electronic medical record to determine their 
initial status and outcome at pt-PET.   

The study was approved by the Hospital São Rafael 
ethical board (CAAE: 79258017.6.0000.0048), 
waived the informed consent, and all information was 
anonymized. The images were acquired according to 
the clinical protocol of Hospital São Rafael for tumor 
PET imaging. 

2.2. Radiomic feature extraction  

Individual lesions from baseline PET scans were 
segmented with the Beth Israel PET/CT plugin for FIJI 
(ImageJ, Bethesda, MD, USA) 2,12 using a 41% 
threshold of maximum SUV (SUVmax). Segmented 
VOIs were analyzed with PyRadiomics, an open-
source platform available at www.radiomics.io that 
enables the extraction of a large panel of radiomic 
features 13. We resampled the matrix grid to cubic 
voxels of 4x4x4 mm³ and used intensity discretization 
with a fixed bin size of 0.25 g/ml to avoid feature 
instability14. The radiomic feature classes and 
corresponding features are presented in Table 1 as 
defined by Griethuysen et al. 13  
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Table 1: Radiomic features.  
Class Features 
First-order statistics SUVmax, kurtosis 
Shape descriptors Metabolic tumor volume (MTV), sphericity, surface volume 

ratio (SVR) 
Gray Level Co-occurrence Matrix (GLCM) Entropy (E), difference average (D) 

Gray Level Size Zone Matrix (GLSZM) Zone percentage (ZP), high-intensity large area emphasis 
(HILAE) 

Neighboring Gray Tone Difference Matrix (NGTDM) Coarseness, complexity 

 
 

Thirteen features from five classes were selected 
from previous studies 5,6,8,14–17. Entropy and difference 
average from GLCM were calculated according to 2 
different methods as described in Hatt et al. (2015), 
which will be denoted as E13 and D13, where E is 
entropy and D is difference average, whereas the 
parameters from the second method will be denoted 
as E1 and D1. Lesions with an MTV < 5 cm³ were 
excluded from the analysis because of insufficient 
voxels to compute textural indexes. 

2.3. Tumor classification 

In pt-PET, patients diagnosed as PD represent the 
group at higher risk of treatment failure and death 
6,18,19. We, therefore, classified the baseline VOIs 
based on the clinical assessment of pt-PET: CMR, 
NMR, and PR were annotated as the responder 
group; and PD was annotated as the non-responder 
group. 

2.4. Statistical analysis 

Tumor level: Analysis for the association between 
features and response to therapy status was 
performed using the area under the ROC curve (AUC) 
computation. Features with p-value < 0.05 were 
selected. Pearson correlation was used to reduce the 
space by further selecting the features which r < 0.90. 
The population was randomly divided into 6 groups, 
each group containing one subject with progressive 
disease. All tumors from four groups were used to 
train a Random Forest-based AdaBoost enhanced 
machine learning (ML) model to discriminate tumors 
into two classes (progressive disease vs. non-
progressive disease), and the two remaining groups 
of tumors were used for model validation. To estimate 
the classifier performance, we combined the 6 groups 
into 15-fold cross-validation, each fold using 4 groups 
for model building and 2 folds for model validation, 
and using random sampling with replacement of non-
progressive disease subjects at each fold 
(supplementary material). The Python library Scikit-
learn was used to implement these methods, 
classifying tumors through an ML score ranging from 
0 to 1, with 0 meaning non-progressive disease and 1 
meaning progressive disease20.  

Subject level: Prediction to discriminate 
responders and non-responders at the subject level 
was assessed through the tumor with the maximum 
ML score within each patient, assessing two methods: 
M1) direct computation of sensitivity and specificity at 
every independent fold: subjects which scored higher 

than ML score threshold S were considered as 
progressive disease. The sensitivities and 
specificities were averaged among all folds; and  
M2) averaging the scores from the 15 folds for each 
tumor (Sm), thus analyzing all 57 subjects together. 
Subjects who scored higher than Sm were considered 
as having progressive disease. The sensitivity and 
specificity were computed for the whole dataset.  
S and Sm were determined through Youden's index. 
The statistical power 1-β of each method was 
assessed with a significance level α = 5%. Fisher's 
exact test was performed to verify differences 
between groups for categorical variables, and 
Wilcoxon Mann–Whitney test for continuous data. 
Also, confidence intervals of sensitivities and 
specificities were estimated using binomial proportion 
Wilson's score method. Prognostication was 
compared with Ann Arbor staging for the initial stage 
(I or II) and advanced stage (III or IV). SPSS 21.0 for 
Windows or OpenEpi (Emory University) was used for 
statistical analysis. 

3. Results 

Population characteristics are presented in Table 2. 

3.1. Tumor level 

Feature selection (Table 3) and reduction (Figure 1) 
revealed five radiomic predictors of treatment failure: 
SUVmax, E1, ZP, HILAE, and Complexity. D1 and 
D13 were also predictors, but due to their high 
correlation with SUVmax, they can be represented by 
SUVmax. ML algorithm thus constructed with these 
predictors and validated in every 15-independent fold 
accomplished superior discrimination than individual 
features. Detailed performance at every 15-validation 
fold is presented in supplementary material, where 
the mean AUC of M1 at the lesion level, AUCm = 0.86. 
For improved readability and interpretation of results, 
the mean ROC curve for M1 (ROCm) was simulated 
by iteratively misspecifying the true values with a 
random gaussian function. The procedure was 
stopped when the simulated AUCS = AUCm = 0.86 21. 
Figure 2 demonstrates the performance of univariate 
features and ML classifiers at the tumor level M1 
(AUCs = 0.86, 95% CI: 0.77-0.94) and M2 (AUC=0.96, 
95% CI: 0.93-1.00). 
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Table 2: Population characteristics. 

 
   Valid values computed: 10 subjects with missing values ª, 3 subjects with missing values b.  
   § Period between baseline and pt-PET 
 
 
Table 3: Feature statistics at the lesion level 

Features Responder (n=289) Non-responder (n=31) p-value 
IQR Median IQR Median  

MTV (cm³) 8.8-31.7 14.7 7.6-38.7 15.7 ns 
SUVmax 6.6-12.1 8.9 4.6-8.5 7.1 ** 
Kurtosis 2.4-3.5 2.8 2.5-3.2 2.8 ns 
D13 3.1-6.0 4.5 1.8-4.0 3.4 ** 
D1 3.0-6.2 4.4 1.7-3.9 3.4 ** 
E13 6.3-7.8 7.0 5.5-7.8 6.4 ns 
E1 7.1-8.9 7.9 5.7-8.0 7.6 *** 
ZP 0.36-0.63 0.53 0.24-0.47 0.41 ** 
HILAE 3.8-19.0 6.7 10.5-116.3 17.0 ** 
Coarseness 0.01-0.04 0.03 0.01-0.05 0.03 ns 
Complexity 286-1844 720 52-611 349 ** 
Sphericity 0.53-0.70 0.63 0.54-0.75 0.65 ns 
SVR 0.26-0.38 0.32 0.25-0.39 0.32 ns 

IQR: interquartile range; MTV: metabolic tumor volume; SUVmax: standardized uptake value of maximum pixel; D13: difference average 
using 13 matrices; D1: difference average using 1 matrix; E13: entropy using 13 matrices; E1: entropy using one matrix; ZP: zone 
percentage; HILAE: high-intensity large area emphasis; SVR: surface volume ratio;  p-value of AUC: ** p  ≤ 0.001, *** 0.001 < p < 0.05, ns: 
p ≥ 0.05. 

 
 
 

 
Figure 1: Correlation matrix of best features predictors. Features 

with Pearson correlation r > 0.9 are highlighted. 
 
 

 
Figure 2: ROC curves of univariate features and machine learning 
classifier.  

 

 

3.2. Subject level 

Upon translating the classification to the subject 
level, the sensitivity and specificity were, respectively, 
80.0% (CI = 43.7-97.0%) and 88.3% (76.6-94.5%) for 
M1 (S = 0.55) and 100% (70.0-100.0%) and 100% 
(93.0-100%) for M2 (Sm = 0.58) (Table 4). Figure 3 
illustrates pretreatment ML scores among groups of 
pt-PET status at the tumor level (A) and subject level 
(B) for M2. Both methods, M1 and M2, were strong 
predictors of treatment failure, which the estimated 
statistical powers 1-β were 94% and 100%, 
respectively.  

Ann Arbor staging had 83.3% (CI = 43.7-97.0%) 
and 31.7% (CI = 20.3-45.0%) sensitivity and 
specificity, respectively. Contrary to the ML scores, it 
was not possible to detect a difference between 
groups for Ann Arbor staging (p = 0.66). 

An example of radiomic characteristics of two 
lesions in Figure 3-B was ML score = 0.77 (SUVmax 
= 3.7, ZP = 0.17, Complexity = 11, HILAE = 150 and 
E1 = 4.5) and ML score = 0.30 (SUVmax = 7.8, ZP = 
0.54, Complexity = 744, HILAE = 4.7 and E1 = 8.4).  
 
Table 4: Classifier performance of machine learning radiomics and 
Ann Arbor at subject level. 

 Sensitivity (95% CI) Specificity (95% CI) 
M1 80.0% (43.7-97.0%) 88.3% (76.6-94.5%) 
M2 100% (70.0-100%) 100% (93.0-100%) 

Ann Arbor 83.3% (43.7-97.0%) 31.7% (20.3-45.0%) 

 

Characteristics Responders (n=51) Non-responders (n=6) p-value 
Median age (range) 28 (4-82) 18 (7-29) 0.04 
Male  53% 50% 1.00 
Ann Arbor    0.66 
stage I/ stage II 2% /29% 0% /17%  
stage III/ stage IV 26% /43% 33% /50%  
B symptoms  88%  ª 67%  b 0.40 
Bulk (>10 cm)  59% 50% 0.69 
Extra nodal disease  65% 50% 1.00 
ABVD or ABVD-like chemotherapy  100% 100% 1.00 
Median time (month) § 4.7 (1.4-11.3) 4.5 (1.8-11.8) 0.94 
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CI: confidence interval 
 

 

 
Figure 3: ML score of M2 versus pt-PET status. A: ML scores for individual tumors. B: maximum ML tumor score for each subject. Boxplots 
represent 5-95% distribution. Dashed lines represent the optimal score threshold of 0.58. CMR: complete metabolic response, NMR or PR: 
no metabolic or partial response, and PD: progressive disease. ** p < 0.001. *** p < 0.05. ns: p ≥ 0.05. 

 
 

4. Discussion 

We evaluated new risk factors of treatment failure 
and predictive models through baseline 18F-FDG 
PET/CT of HL by characterizing tumor 18F-FDG 
distribution. We conducted a careful methodological 
design and data quality control to avoid possible 
pitfalls in the radiomic workflow and analysis and 
assure the reliability and repeatability of the results 14-

17.  
Recent studies of morphological biomarker TMTV 

in baseline 18F-FDG PET/CT demonstrated that a 
higher TMTV indicates the worst prognosis 2,3. Hatt et 
al. (2015) studied associations between textural 
features and MTV in various tumors, demonstrating 
the added contribution and dependence of textural 
features on MTV 15. Here, we evaluated tumor texture 
as an indicator of disease progression and excluded 
MTV in our ML model since the study protocol 
anticipated the exclusion of features with p ≥ 0.05 for 
the AUC. Current evidence using radiomics with HL 
18F-FDG PET/CT suggests that robust statistical 
approaches based on ML would potentially improve 
predictive models for HL staging6,7. Thus, we 
conducted two ML radiomic classification methods 
with good performance using a different approach by 
testing all six "progressive disease" patients through 
15 independent validation folds.  

Radiomic features and tumors have a complex 
relationship. The exact relationship between radiomic 
features and underlying tumor biology can be 
established only on carefully designed prospective 
studies. However, we can assume that a combination 
of features may be associated with tumor cellularity, 
vascularization, perfusion, proliferation, 
aggressiveness, hypoxia, angiogenesis, and 
necrosis, factors related to more aggressive behavior, 
poorer response to treatment, and worse 
prognosis24,25. We demonstrated that five features 
(out of 13 pre-selected features) are informative 
regarding differences in 18F-FDG uptake 
heterogeneity in HL 18F-FDG PET/CT. From table 3, 

texture features HILAE, ZP, E1, and Complexity 
suggest that more homogeneous tumors are less 
likely to respond to therapy than more heterogeneous 
ones. In this study, M1 was assessed through every 
15 independent folds, while M2 was not validated in 
an independent dataset. Then, M2 may have been 
positively biased and lacks internal validation 17. 
Additionally, feature selection and reduction should 
ideally be performed using only the model 
development dataset 17, but it was not possible in this 
study due to our cross-validation approach using all 
six "progressive disease" patients. Indeed, the results 
of M1 and M2 are encouraging to validate or refute 
this pilot study in an external cohort. 

Our study has other limitations. First, we used the 
Lugano Criteria as the gold standard to define 
treatment failure, which has 73% sensitivity and 94% 
specificity for iPET 9,10. Since end-of-treatment PET is 
more meaningful than iPET, tumor classification bias 
probably occurred. However, the high specificity of 
our model could diminish this impact while translating 
the diagnostic information to the subject level. 
Second, the study involved only one center and PET 
system, lacking external validation. However, we 
used reconstruction settings in compliance with the 
EANM standards9, and discretization with a fixed bin 
size is known to provide more robust results14. 
Despite the selected features being reported robust in 
test–retest reproducibility16, our results are valid only 
for the image reconstruction, segmentation (41% 
threshold of SUVmax increases the weight of regions 
with high uptake), and quantification settings 
presented herein, since these settings significantly 
affect the values of radiomic features 27. In addition, 
patient characteristics were not homogenous (table 
2), with non-responders being younger than 
responders (p = 0.04), possibly introducing patient 
selection bias. Last, we used a small sample size, 
despite being sufficiently large to detect differences in 
radiomic profile among subject groups and powerful 
enough to model the complex relationship among 
features.  
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Our efforts are in line with a global demand to make 
radiomics and molecular imaging feasible and 
translational to clinical practice, as methodological 
procedures, image noise standardization, and feature 
harmonization is becoming more popular 28,29.  

5. Conclusions 

Our study indicates that radiomic features from 
baseline 18F-FDG PET scans of HL are associated 
with treatment failure by Lugano Criteria and with 
poorer prognosis. The proposed method 
outperformed conventional PET metrics (SUVmax 
and MTV) and the current Ann Arbor staging. This 
association enabled a radiomic ML classification that 
offers promise for personalized medicine, thus 
stratifying patients to conduct the best treatment 
strategies. 
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Supplementary Material 

 

Illustration and detailed model preparation: 

The following illustration represents every ML 15-fold cross-validation. From the six groups, every 

subset has one subject classified as "progressive disease". The training was performed with four subsets and 

the validation with two subsets, where each fold randomly distributed 85% of "non-progressive disease" subjects 

into the training dataset and the remaining 15% into the validation datasets. Tumors from the validation datasets 

were scored at every fold.  

 
 

This random sampling with a replacement scheme resulted in 15 independent validation datasets at the 

tumor level. The model details are as follows: 

RandomForestClassifier (n_estimators=1, max_depth=2, min_samples_split=20, random_state=6, 
class_weight='balanced_subsample') 
 
AdaBoostClassifier (base_estimator=RandomForestClassifier, n_estimators=300, algorithm="SAMME.R", 
learning_rate=0.7, random_state=32) 
  



Revista Brasileira de Física Médica (2023) 17:680 

 
Associação Brasileira de Física Médica ®   9 

The figure below shows the ROC curves at every validation dataset (F1 to F15). 

                                                                                 
Tumor scores identify subjects at risk of treatment failure (S = 0.55). The table below shows the 

classification performance at the subject level: 

 

 

Fold Sensitivity Specificity 
1 100% 100% 
2 100% 100% 
3 100% 100% 
4 100% 100% 
5 100% 100% 
6 100% 80.0% 
7 100% 100% 
8 100% 100% 
9 50.0% 75.0% 
10 50.0% 75.0% 
11 50.0% 80.0% 
12 100% 60.0% 
13 50.0% 100% 
14 50.0% 75.0% 
15 50.0% 100% 

Mean (95% CI) 80.0% (43.7-97.0%) 88.3% (76.6-94.5%) 


