CBCT Image Registration for Adaptive Radio and Proton Therapy of Prostate Cance

Palavras-chave: CBCT, fusão de imagens, radioterapia adaptativa

Resumo

O uso de CBCT na radioterapia para o tratamento do câncer de próstata é questionada por restrições de qualidade de imagem e limitações técnicas. Tais fatores podem frustrar o intento de utilizar imagens volumétricas para quantificar as alterações anatômicas e avaliar o plano de tratamento. Este estudo investiga o impacto de alterações anatômicas e o potencial do uso de CBCT para IMRT e IMPT em pacientes de câncer de próstata. A fusão deformável (DIR) de imagens é aplicada em 9 pacientes com câncer de próstata escaneados com CBCT, para adaptar a tomografia de planejamento e produzir uma tomografia virtual com anatomia atualizada do paciente. O acompanhamento diário por imagem foi simulado com CBCT repetidas, com base nos tecidos moles ou na correspondência da anatomia óssea. A detecção automática de pontos de referência foi usada para avaliar a distância residual dos pontos de referência distribuídos na região de interesse (alvo e órgãos em risco) após o DIR. O DIR permitiu que a distância média desses marcos fosse reduzida de 3.79 para 2.00 mm. Os planos IMRT e IMPT foram criados e recalculados em tomografias virtuais. O aumento da dose do reto foi observado em 8 dos 9 pacientes, e em 3 casos houve violação das restrições, de acordo com as diretrizes do QUANTEC, de até 75 Gy em 19% do volume do reto. A perda de cobertura de CTV mais importante foi em torno de 5% da dose prescrita para um caso de terapia de prótons. Para ambos os tipos de tratamento, o movimento inter-fração de PTV e variações estruturais de órgãos em risco, podem resultar em perda de cobertura de alvo e / ou dano excessivo precoce em tecido de resposta aguda.

Downloads

Não há dados estatísticos.

Biografia do Autor

Roberto Cassetta, Loyola University Chicago
Roberto Cassetta, PhD
Research Associate, Division of Medical Physics
Department of Radiation Oncology
Loyola University Medical Center

Referências

Tuohy R, Bosse C, Mavroidis P, Shi Z, Crownover R, Papanikolaou N, et al. Deformable image and dose registration evaluation using two commercial programs. Int J Cancer Ther Oncol. 2014;2(2).

Lou Y, Niu T, Jia X, Vela P a., Zhu L, Tannenbaum AR. Joint CT/CBCT deformable registration and CBCT enhancement for cancer radiotherapy. Med Image Anal [Internet]. 2013;17(3):387–400. Available from: http://dx.doi.org/10.1016/j.media.2013.01.005

Ghilezan M, Yan D, Martinez A. Adaptive Radiation Therapy for Prostate Cancer. Semin Radiat Oncol. 2013;20(2):130–7.

Estro 33, 2014. :1682.

Veiga C, Janssens G, Teng CL, Baudier T, Hotoiu L, McClelland JR, et al. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer. Int J Radiat Oncol Biol Phys [Internet]. 2016 [cited 2017 Jun 5];95(1):549–59. Available from: http://www.sciencedirect.com/science/article/pii/S0360301616001085

Veiga C, Alshaikhi J, Amos R. Cone-Beam Computed Tomography and Deformable Registration-Based ‘“ Dose of the Day ”’ Calculations for Adaptive Proton Therapy. Int J Part Ther. 2015;2(2):1–11.

Landry G, Nijhuis R, Dedes G, Handrack J, Thieke C, Janssens G, et al. Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily dose recalculation. Med Phys [Internet]. 2015;42(3):1354–66. Available from: http://scitation.aip.org/content/aapm/journal/medphys/42/3/10.1118/1.4908223

Foley D, McClean B, McBride P. Adaptation of daily dose using CBCT imaging. Phys Medica [Internet]. 2016 Jul [cited 2017 Jun 20];32(7):950. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1120179716300552

Hinault P, Compagnon F, Lacaze T, Bachaud JM, Graulieres E. 6. Adaptive radiotherapy: Evaluation of the dose actually delivered to the patient in a treatment of prostate cancer radiotherapy. Phys Medica [Internet]. 2016;32:344. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1120179716310341

Kozak KR, Kachnic L a., Adams J, Crowley EM, Alexander BM, Mamon HJ, et al. Dosimetric Feasibility of Hypofractionated Proton Radiotherapy for Neoadjuvant Pancreatic Cancer Treatment. Int J Radiat Oncol Biol Phys. 2007;68(5):1557–66.

Rombi B, Delaney TF, MacDonald SM, Huang MS, Ebb DH, Liebsch NJ, et al. Proton radiotherapy for pediatric Ewing’s sarcoma: Initial clinical outcomes. Int J Radiat Oncol Biol Phys. 2012;82(3):1142–8.

Nichols RC, Huh SN, Prado KL, Yi BY, Sharma NK, Ho MW, et al. Protons offer reduced normal-tissue exposure for patients receiving postoperative radiotherapy for resected pancreatic head cancer. Int J Radiat Oncol Biol Phys [Internet]. 2012;83(1):158–63. Available from: http://dx.doi.org/10.1016/j.ijrobp.2011.05.045

Flejmer AM, Nyström PW, Dohlmar F, Josefsson D, Dasu A. Potential Benefit of Scanned Proton Beam versus Photons as Adjuvant Radiation Therapy in Breast Cancer. Int J Part Ther [Internet]. 2015;1(4):845–55. Available from: http://theijpt.org/doi/10.14338/IJPT-14-00013.1

Slater JM, Ling TC, Mifflin R, Nookala P, Grove R, Ly AM, et al. Protons Offer Reduced Tissue Exposure for Patients Receiving Radiation Therapy for Pancreatic Cancer. Int J Part Ther [Internet]. 2014;1(3):702–10. Available from: http://theijpt.org/doi/abs/10.14338/IJPT-14-00008.1

Haverkort M a D, Van De Kamer JB, Pieters BR, Van Tienhoven G, Assendelft E, Lensing AL, et al. Position verification for the prostate: Effect on rectal wall dose. Int J Radiat Oncol Biol Phys. 2011;80(2):462–8.

Litzenberg DW, Balter JM, Hadley SW, Sandler HM, Willoughby TR, Kupelian P a., et al. Influence of intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65(2):548–53.

Scaife J, Harrison K, Romanchikova M, Parker A, Sutcliffe M, Bond S, et al. Random variation in rectal position during radiotherapy for prostate cancer is two to three times greater than that predicted from prostate motion. Br J Radiol. 2014;87(1042).

Akino Y, Yoshioka Y, Fukuda S, Maruoka S, Takahashi Y, Yagi M, et al. Estimation of rectal dose using daily megavoltage cone-beam computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2013;87(3):602–8.

Desplanques M, Tagaste B, Fontana G, Pella A, Riboldi M, Fattori G, et al. A comparative study between the imaging system and the optical tracking system in proton therapy at CNAO. J Radiat Res. 2013;54.

Pugh TJ, Munsell MF, Choi S, Nguyen QN, Mathai B, Zhu XR, et al. Quality of life and toxicity from passively scattered and spot-scanning proton beam therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys [Internet]. 2013;87(5):946–53. Available from: http://dx.doi.org/10.1016/j.ijrobp.2013.08.032

Mendenhall NP, Hoppe BS, Nichols RC, Mendenhall WM, Morris CG, Li Z, et al. Five-year outcomes from 3 prospective trials of image-guided proton therapy for prostate cancer. Int J Radiat Oncol Biol Phys [Internet]. 2014;88(3):596–602. Available from: http://dx.doi.org/10.1016/j.ijrobp.2013.11.007

Ferjani S, Huang G, Shang Q, Stephans KL, Zhong Y, Qi P, et al. Alignment focus of daily image guidance for concurrent treatment of prostate and pelvic lymph nodes. Int J Radiat Oncol Biol Phys [Internet]. 2013;87(2):383–9. Available from: http://dx.doi.org/10.1016/j.ijrobp.2013.06.003

Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of Normal Tissue Complication Probability Models in the Clinic. Int J Radiat Oncol Biol Phys [Internet]. 2010 Mar 1 [cited 2017 Jul 8];76(3 SUPPL.):S10-9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S036030160903288X

Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. Int J Comput Vis. 2004;60(2):91–110.

Cheung W, Hamarneh G. n-SIFT: n-Dimensional scale invariant feature transform. IEEE Trans Image Process. 2009;18(9):2012–21.

Paganelli C, Peroni M, Riboldi M, Sharp GC, Ciardo D, Alterio D, et al. Scale invariant feature transform in adaptive radiation therapy: a tool for deformable image registration assessment and re-planning indication. Phys Med Biol [Internet]. 2013;58:287–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23257263

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, et al. Engineering and algorithm design for an image processing Api: a technical report on ITK--the Insight Toolkit. Stud Health Technol Inform. 2002;85:586–92.

Mattes D, Haynor D. Nonrigid multimodality image registration. In: SPIE [Internet]. 2001. p. 1609–20. Available from: http://dx.doi.org/10.1117/12.431046%5Cnhttp://proceedings.spiedigitallibrary.org/data/Conferences/SPIEP/35163/1609_1.pdf

Johnson HJ, Mccormick M, Ibanez L, Consortium IS. The ITK Software Guide Third Edition - Updated for ITK version 4.5 [Internet]. 2013. Available from: http://itk.org/ItkSoftwareGuide.pdf

Wang C-JJ, Leung SW, Chen H-CC, Sun L-MM, Fang F-MM, Huang E-YY, et al. The correlation of acute toxicity and late rectal injury in radiotherapy for cervical carcinoma: Evidence suggestive of consequential late effect (CQLE). Int J Radiat Oncol Biol Phys [Internet]. 1998 Jan 1 [cited 2017 Jun 5];40(1):85–91. Available from: http://www.sciencedirect.com/science/article/pii/S0360301697005609

Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation Dose–Volume Effects in Radiation-Induced Rectal Injury. Int J Radiat Oncol [Internet]. 2010 [cited 2017 Jun 5];76(3):S123–9. Available from: http://www.sciencedirect.com/science/article/pii/S036030160903291X

Yang C, Liu F, Ahunbay E, Chang YW, Lawton C, Schultz C, et al. Combined online and offline adaptive radiation therapy: A dosimetric feasibility study. Pract Radiat Oncol [Internet]. 2014;4(1):e75–83. Available from: http://dx.doi.org/10.1016/j.prro.2013.02.012

Publicado
2020-07-15
Como Citar
Cassetta, R., Riboldi, M., Leandro, K., Schwarz, M., Goncalves, V., Guimaraes, R., Sakuraba, R., & Novaes, P. (2020). CBCT Image Registration for Adaptive Radio and Proton Therapy of Prostate Cance. Revista Brasileira De Física Médica, 14, 534. https://doi.org/10.29384/rbfm.2020.v14.19849001534
Seção
Artigo Original